Mitigation and Adaptation Studies

Class 15: Understanding Vulnerabilities: Case Study Input

Contents

- More on Risk, Vulnerability, Resilience, Adaptation (class 14)
- Vulnerabilities of the Planetary System (class 14)
 - Systemic vulnerabilities (class 14)
 - Land Cover Changes
 - Earth Energy Imbalance
 - Sea Level Changes
 - Pollution
 - Vulnerabilities of Homo Sapiens/the Anthroposphere - Health
 - Nexus (e.g., food-water-energy)
 - Economic vulnerabilities
 - Social vulnerabilities: inequality, injustice, unrest

Non-Human & Human Built Environment; Economy, Inequality & Injustice

Invasive Species of the Chesapeake Bay

Mostly caused by human interaction by ships, pets, and gardening etc.. Affect current wildlife by competing with resources Economic Problems

Vulnerabilities

Conditions of the bay/ecosystem

- Temperature, Ph, salinity, etc...
- Wide range of areas to inhabit

Biodiversity of the bay

- How organisms react with one another
- Organism's specific life cycle

Mitigation and Adaptation Studies

Class 15: Understanding Vulnerabilities:

Contents

- More on Risk, Vulnerability, Resilience, Adaptation (class 14)
- Vulnerabilities of the Planetary System (class 14)
 - Systemic vulnerabilities (class 14)
 - Land Cover Changes
 - Earth Energy Imbalance
 - Sea Level Changes
 - Pollution
 - Vulnerabilities of Homo Sapiens/the Anthroposphere - Health
 - Nexus (e.g., food-water-energy)
 - Economic vulnerabilities
 - Social vulnerabilities: inequality, injustice, unrest

Non-Human & Human Built Environment; Economy, Inequality & Injustice

Barnosky et al., 2012, Nature, 486.

(Generally increases with human population size)

Barnosky et al., 2012, Nature, 486.

Figure 1 Drivers of a potential planetary-scale critical transition. a, Humans locally transform and fragment landscapes. b, Adjacent areas still harbouring natural landscapes undergo indirect changes. c, Anthropogenic local state shifts accumulate to transform a high percentage of Earth's surface drastically; brown colouring indicates the approximately 40% of terrestrial ecosystems that have now been transformed to agricultural landscapes, as explained in ref. 34. d, Global-scale forcings emerge from accumulated local human impacts, for example dead zones in the oceans from run-off of agricultural pollutants. e, Changes in atmospheric and ocean chemistry from the release of greenhouse gases as fossil fuels are burned. f-h, Global-scale forcings emerge to cause ecological changes even in areas that are far from human population concentrations. f, Beetle-killed conifer forests (brown trees) triggered by seasonal changes in temperature observed over the past five decades. g, Reservoirs of biodiversity, such as tropical rainforests, are projected to lose many species as global climate change causes local changes in temperature and precipitation, exacerbating other threats already causing abnormally high extinction rates. In the case of amphibians, this threat is the human-facilitated spread of chytrid fungus. h, Glaciers on Mount Kilimanjaro, which remained large throughout the past 11,000 yr, are now melting quickly, a global trend that in many parts of the world threatens the water supplies of major population centres. As increasing human populations directly transform more and more of Earth's surface, such changes driven by emergent global-scale forcings increase drastically, in turn causing state shifts in ecosystems that are not directly used by people. Photo credits: E.A.H. and A.D.B. (a-c, e-h); NASA (d).

Barnosky et al., 2012, Nature, 486.

Land Use Changes

Toxic products ...

earson Education Inc.

... about toxic substances produced by cyanobacteria ...

Segmentation/Fragmentation

Cascading land cover changes

Cascading land cover changes

Lenton & Schellnhuber (2007) Nature Reports Climate Change

Cascading land cover changes

Mitigation and Adaptation Studies

Class 15: Understanding Vulnerabilities:

Contents

- More on Risk, Vulnerability, Resilience, Adaptation (class 14)
- Vulnerabilities of the Planetary System (class 14)
 - Systemic vulnerabilities (class 14)
 - Land Cover Changes
 - Earth Energy Imbalance
 - Sea Level Changes
 - Pollution
 - Vulnerabilities of Homo Sapiens/the Anthroposphere - Health
 - Nexus (e.g., food-water-energy)
 - Economic vulnerabilities
 - Social vulnerabilities: inequality, injustice, unrest

Non-Human & Human Built Environment; Economy, Inequality & Injustice

Global Warming: Earth Energy Imbalance

Global Warming: Earth Energy Imbalance

Additional heat storage:

Great Barrier Reef bleached for unprecedented second year running

Reef authority says findings of aerial surveys show enough to confirm another mass coral bleaching event, after last year's dramatic death rate

Photos taken by marine biologist Brett Monroe Garner on the Great Barrier Reef between Port Douglas and Cairns show bleaching of corals he said were 'full of colour' just months ago. Photograph: Brett Monroe Garner/Greenpeace

Mitigation and Adaptation Studies

Class 15: Understanding Vulnerabilities:

Contents

- More on Risk, Vulnerability, Resilience, Adaptation (class 14)
- Vulnerabilities of the Planetary System (class 14)
 - Systemic vulnerabilities (class 14)
 - Land Cover Changes
 - Earth Energy Imbalance
 - Sea Level Changes
 - Pollution
 - Vulnerabilities of Homo Sapiens/the Anthroposphere - Health
 - Nexus (e.g., food-water-energy)
 - Economic vulnerabilities
 - Social vulnerabilities: inequality, injustice, unrest

Non-Human & Human Built Environment; Economy, Inequality & Injustice

	20th	B1	A1B	A2	

Homo sapiens: a coastal species?

19.20.21.org: 19 cities in the world with 20 million people in the 21st century

8. St. Petersburg, Russia 1,439,000

6. Vienna, Austria 1,698,000

0.5.5

4. Berlin, Germany 2,707,000

7. Tokyo, Japan 1,497,000

In 1900, London and New York appear on the map and will compete for the first place in the next 50 years.

19.20.21.org:
19 cities in the world with
20 million people in the
21st century

 18. Moscow, Rusia 10,654,000

 Jon, UK 8,505,000

 erlin, Germany 3,389,000

 Paris, France 9,820,000

 20. Istanbul, Turkey 9,712,000

 11,128,000

 23. Tehran, Iran 7,314,000

 11. Karachi, Pakistan 11,608,000

 5. Mumbai, India 18,196,000

 6. Delhi, India 15,048,000

 26. Nigeria 10,886,000

0.0.5

8. Jakarta, Indonesia 13,215,000

By 2005 Tokyo, Japan was the largest city in the world with over 35 million people.

Sea Level Changes

22. London, UK 8,505,000 3. New York City, US 18,718,000 19. Paris, France 9,820,000

10. Los Angeles, US 12,298,000

20. Istanbul, Turkey 9,712,000

"..., almost all of the cities to be studied in 19.20.21 are cities that border the oceans of the world, and will be affected by the rise in sea levels

15. Lagos, Nigeria 10,886,000

12. Rio de Janeiro, Brazil 11,469,000

4. Sao Paulo, Brazil 18,333,000

9. Buenos Aires, Argentina 12,550,000

19.20.21.org: 19 cities in the world with 20 million people in the 21 st century

Tokyo, Japan 35,197,000
 Osaka-Kobe, Japan 11,268,000
 Beijing, China 10,717,000
 Seoul, S. Korea 9,645,000

0. Dem, maia 10,04

25. Singapore 4,326,000

8. Jakarta, Indonesia 13,215,000

By 2005 Tokyo, Japan was the largest city in the world with over 35 million people.

Mitigation and Adaptation Studies

Class 15: Understanding Vulnerabilities:

Contents

- More on Risk, Vulnerability, Resilience, Adaptation (class 14)
- Vulnerabilities of the Planetary System (class 14)
 - Systemic vulnerabilities (class 14)
 - Land Cover Changes
 - Earth Energy Imbalance
 - Sea Level Changes
 - Pollution
 - Vulnerabilities of Homo Sapiens/the Anthroposphere - Health
 - Nexus (e.g., food-water-energy)
 - Economic vulnerabilities
 - Social vulnerabilities: inequality, injustice, unrest

Non-Human & Human Built Environment; Economy, Inequality & Injustice

Homo sapiens: Ozone-depleting substances (ODS): HCFCs, chlorofluorocarbons (CFCs), halons used as halocarbon refrigerants, solvents, propellants and foam-blowing agents

System trajectory without human action

System trajectory without human action

Mitigation and Adaptation Studies

Class 15: Understanding Vulnerabilities:

Contents

- More on Risk, Vulnerability, Resilience, Adaptation (class 14)
- Vulnerabilities of the Planetary System (class 14)
 - Systemic vulnerabilities (class 14)
 - Land Cover Changes
 - Earth Energy Imbalance
 - Sea Level Changes
 - Pollution
 - Vulnerabilities of Homo Sapiens/the Anthroposphere
 - Health
 - Nexus (e.g., food-water-energy)
 - Economic vulnerabilities
 - Social vulnerabilities: inequality, injustice, unrest

Non-Human & Human Built Environment; Economy, Inequality & Injustice

Mitigation and Adaptation Studies

Class 15: Understanding Vulnerabilities:

Contents

- More on Risk, Vulnerability, Resilience, Adaptation (class 14)
- Vulnerabilities of the Planetary System (class 14)
 - Systemic vulnerabilities (class 14)
 - Land Cover Changes
 - Earth Energy Imbalance
 - Sea Level Changes
 - Pollution
 - Vulnerabilities of Homo Sapiens/the Anthroposphere Health
 - Nexus (e.g., food-water-energy)
 - Economic vulnerabilities
 - Social vulnerabilities: inequality, injustice, unrest

Non-Human & Human Built Environment; Economy, Inequality & Injustice

Health

Hazard or impact

Vulnerability to and impacts of LSLR Table 1

Catastrophic coastal flooding	Deaths through (injuries, infect intestinal, skin
Flood-induced pollution	Infectious diseas
Reduced water quality and reduced access to potable water due to salinification and/or pollution	Diarrheal disease hepatitis, othe
Impairment of food quality (through pollution of farmland and fisheries) and reduction of food supply (e.g., loss of farmland and decreasing productivity of fisheries)	Malnutrition; she marine bacteri
Change in transmission intensity, distribution of vector-borne disease, abundance of vectors	Changes in mala infectious dise
Population displacements, degradation of livelihoods	Less well defined social conflicts

Modified from Nicholls, R. J., P. P. Wong, V. R. Burkett, J. O. Codignotto, J. E. Hay, R. F. McLean, S. Ragoonaden, and C. D. Woodroffe, 2007b: Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. Hanson, Eds., Cambridge University Press, Cambridge, UK, 315-356.

Direct I	health	impacts
----------	--------	---------

Health infrastructure

drowning and other causes, tious diseases (respiratory, n), mental health disorders ses, allergies

es (giardia, cholera), er water borne diseases

ellfish poisoning, ia proliferation

Health services interruption, availability of health staff, transportation disruption, energy and other supplies Long-lasting degradation of health service infrastructure Reduced water supply for health services

Food safety

aria and other mosquito-borne eases d; can include increased s; increased crime rate; prostitution to replace lost income

General stress on health services because of rapid changes in demands

Health

Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability

Vulnerability to Table 1

Executive summary

Hazard or impact

Catastrophic coastal flooding

Climate change currently contributes to the global burden of disease and premature deaths (very high confidence). Human beings are exposed to climate change through changing weather patterns (temperature, precipitation, sea-level rise and more frequent extreme events) and indirectly through changes in water, air and food quality and changes in ecosystems, agriculture, industry and settlements and the economy. At this early stage the effects are small but are projected to progressively increase in all countries and regions. [8.4.1]

Emerging evidence of climate change effects on human health shows that climate change has:

- altered the distribution of some infectious disease vectors (medium confidence) [8.2.8];
 - altered the seasonal distribution of some allergenic pollen species (high confidence) [8.2.7];
 - increased heatwave-related deaths (medium confidence) [8.2.1].

Projected trends in climate-change-related exposures of importance to human health will:

- [8.2.3, 8.4.1];
- (high confidence) [8.2.2, 8.4.1];
- continue to change the range of some infectious disease vectors (high confidence) [8.2, 8.4];
- expand and the transmission season may be changed (very high confidence) [8.4.1.2];
- increase the burden of diarrhoeal diseases (medium confidence) [8.2, 8.4];
- increase the number of people at risk of dengue (low confidence) [8.2.8, 8.4.1];

Adaptive capacity needs to be improved everywhere; impacts of recent hurricanes and heatwaves show that even highincome countries are not well prepared to cope with extreme weather events (high confidence). [8.2.1, 8.2.2]

Adverse health impacts will be greatest in low-income countries. Those at greater risk include, in all countries, the urban poor, the elderly and children, traditional societies, subsistence farmers, and coastal populations (high confidence). [8.1.1, 8.4.2, 8.6.1.3, 8.7

Economic development is an important component of adaptation, but on its own will not insulate the world's population from disease and injury due to climate change (very high confidence). Critically important will be the manner in which economic growth occurs, the distribution of the benefits of growth, and factors that directly shape the health of populations, such as education, health care, and public-health infrastructure, [8,3,2]

Flood-induced pollution

Reduced water quality and re to potable water due to sa and/or pollution Impairment of food quality (1 of farmland and fisheries) food supply (e.g., loss of decreasing productivity of Change in transmission inter vector-borne disease, abu

Population displacements, de livelihoods

Modified from Nicholls, R. J., P. I areas. Climate Change 2007: Impa M. L. Parry, O. F. Canziani, J. P.

increase malnutrition and consequent disorders, including those relating to child growth and development (high confidence)

increase the number of people suffering from death, disease and injury from heatwaves, floods, storms, fires and droughts

have mixed effects on malaria; in some places the geographical range will contract, elsewhere the geographical range will

increase cardio-respiratory morbidity and mortality associated with ground-level ozone (high confidence) [8.2.6, 8.4.1.4];

 bring some benefits to health, including fewer deaths from cold, although it is expected that these will be outweighed by the negative effects of rising temperatures worldwide, especially in developing countries (high confidence) [8.2.1, 8.4.1].

tructure

ces interruption, availability of ff, transportation disruption, d other supplies degradation of health service

ture

ter supply for health services

ss on health services because of nges in demands

007b: Coastal systems and low-lying overnmental Panel on Climate Change, 5-356.

Health

Vulnerablity to Infectious Diseases

Biological Hazards: Sources of biological hazards may include bacteria, viruses, insects, plants, birds, animals, and humans. These sources can cause a variety of health effects ranging from skin irritation and allergies to infections (e.g., tuberculosis, AIDS), cancer and so on.

Figure 6.1: Four main types of transmission cycle for infectious diseases (reference

http://www.who.int/globalchange/environment/en/chapter6.pdf

Table 6.1: Examples of how diverse environmental changes affect the occurrence of various infectious diseases in humans (Refernce 5)

Environmental changes	Example diseases	Pathway of effect
Dams, canals, irrigation	Schistosomiasis	🔺 Snail host habitat, human d
	Malaria	 Breeding sites for mosquito
	Helminthiasies	 Larval contact due to moist
	River blindness	 Blackfly breeding, disease
Agricultural intensification	Malaria	Crop insecticides and <a href="https://www.vecticides.and-wectides.and-wec</td>
	Venezuelan haemorraghic fever	 rodent abundance, contact
Urbanization, urban crowding	Cholera	 sanitation, hygiene; vate contamination
	Dengue	Water-collecting trash, Ae aegypti mosquito breeding
	Cutaneous leishmaniasis	 proximity, sandfly vectors
Deforestation and new habitation	Malaria	 Breeding sites and vectors, immigration of susceptible
	Oropouche	contact, breeding of vectors
	Visceral leishmaniasis	contact with sandfly vectors
Reforestation	Lyme disease	tick hosts, outdoor exposure
Ocean warming	Red tide	Toxic algal blooms
Elevated precipitation	Rift valley fever	Pools for mosquito breeding
	Hantavirus pulmonary syndrome	 Rodent food, habitat, abundance
		increase

Mitigation and Adaptation Studies

Class 15: Understanding Vulnerabilities:

Contents

- More on Risk, Vulnerability, Resilience, Adaptation (class 14)
- Vulnerabilities of the Planetary System (class 14)
 - Systemic vulnerabilities (class 14)
 - Land Cover Changes
 - Earth Energy Imbalance
 - Sea Level Changes
 - Pollution
 - Vulnerabilities of Homo Sapiens/the Anthroposphere - Health
 - Nexus (e.g., food-water-energy)
 - Economic vulnerabilities
 - Social vulnerabilities: inequality, injustice, unrest

Non-Human & Human Built Environment; Economy, Inequality & Injustice

Nexus

Nexus:

- a means of connection
- a connected series of group
- the core or center

Homo sapiens

Terrestrial ecosystems

Marine ecosystems

Nexus

WORLD ENERGY COUNCIL

World Energy Perspectives | 2016

THE ROAD TO RESILIENCE – MANAGING THE RISKS OF THE ENERGY-WATER-FOOD NEXUS

IN PARTNERSHIP WITH MARSH & MCLENNAN COMPANIES AND SWISS RE CORPORATE SOLUTIONS

Nexus

WORLD ENERGY

COUNCIL

KEY FINDINGS

ENERGY IS THE SECOND LARGEST FRESHWATER USER after agriculture. Water is used all along the energy value chain in primary energy production (coal, oil, gas, biofuels) and in power generation (hydro, cooling). 98% of the power currently produced needs water.

RISKS POSED BY THE ENERGY-WATER-FOOD NEXUS WILL BECOME MORE SIGNIFI-CANT because of growing demand for energy, water and food. Moreover, some of the regions that are currently water stressed are also likely to see significant economic development, population growth and changing consumption patterns, and a higher concentration of people and assets in critical areas, intensifying the risks posed by the nexus.

ALONGSIDE GROWING DEMAND, INCREASING UNCERTAINTY ABOUT WATER AVAILABILITY and quality - driven by climate change impacts such as declining freshwater availability, increased ocean temperatures and more extreme weather will further increase the significance of risks posed by the nexus.1

ANALYSIS IN NATURE CLIMATE CHANGE² highlights that from 2014 to 2069, reductions in usable water capacity could impact two-thirds of the 24,515 hydropower plants analysed and more than 80% of the 1,427 thermal electric power plants assessed.

IN MANY CASES, THERE IS A LACK OF LOCATION-SPECIFIC KNOWLEDGE ON WATER ISSUES and a lack of modelling tools to adequately reflect risks posed by the nexus in energy infrastructure investment decisions. Such risks can be associated with large economic stakes: in 2015, hydropower facilities in Brazil sustained economic losses of more than US\$4.3 billion due to drought-related energy and water rationing measures.

THE RISKS POSED BY THE NEXUS ARE OFTEN EXACERBATED by the lack of sound water governance such as well-defined water rights for competing users, water pricing and trading arrangements.

CROSS-BORDER COOPERATION IS A KEY ISSUE. 261 international trans-boundary basins cover 45% of the earth's land surface, serve 40% of the world's population and provide 60% of the earth's entire freshwater volume. This affects the operation of planned and proposed energy infrastructures, and there is a need to ensure that adequate cross-border water management frameworks are in place.

World Energy **Perspectives | 2016**

THE ROAD TO RESILIENCE -MANAGING THE RISKS OF THE ENERGY-WATER-FOOD NEXUS

IN PARTNERSHIP WITH MARSH & MCLENNAN COMPANIES AND SWISS RE CORPORATE SOLUTIONS

Mitigation and Adaptation Studies

Class 15: Understanding Vulnerabilities:

Contents

- More on Risk, Vulnerability, Resilience, Adaptation (class 14)
- Vulnerabilities of the Planetary System (class 14)
 - Systemic vulnerabilities (class 14)
 - Land Cover Changes
 - Earth Energy Imbalance
 - Sea Level Changes
 - Pollution
 - Vulnerabilities of Homo Sapiens/the Anthroposphere - Health
 - Nexus (e.g., food-water-energy)
 - Economic vulnerabilities
 - Social vulnerabilities: inequality, injustice, unrest

Non-Human & Human Built Environment; Economy, Inequality & Injustice

Will a rising tide sink all homes?

Nationwide, almost 1.9 million homes (or roughly 2 percent of all U.S. homes) worth a combined \$882 billion are at risk of being underwater by 2100 if sea levels rise by six feet. Some states will be hit harder than others.

State	Number of Potentially Underwater Properties	Fraction of Total Housing Stock Underwater	Total Value of Potentially Underwater Properties
California	42,353	0.44%	\$49.2B
Texas	46,804	0.61%	\$12B
New York	96,708	2.10%	\$71B
Florida	934,411	12.56%	\$413B
Pennsylvania	2,661	0.06%	\$730M
Georgia	24,379	0.75%	\$10.2B
North Carolina	57,259	1.64%	\$20.6B
New Jersey	190,429	7.35%	\$93.1B
Virginia	46,287	1.77%	\$14.4B
Washington	31,235	1.32%	\$13.7B
Massachusetts	62,069	3.10%	\$51.2B
Maryland	64,299	3.09%	\$19.6B
Alabama	12,735	0.77%	\$3.8B
South Carolina	83,833	4.42%	\$45B
Louisiana	80,080	5.88%	\$13.2B
Oregon	4,959	0.37%	\$1B
Connecticut	18,173	1.61%	\$13.2B
Mississippi	5,572	0.72%	\$1B
Hawaii	37,556	9.07%	\$25.3B
Maine	5,412	0.98%	\$3.1B
New Hampshire	4,064	0.71%	\$1.7B
Rhode Island	4,853	1.47%	\$2.9B
Delaware	11,670	3.09%	\$3.6B

Source: National Oceanic and Atmospheric Administration (NOAA); Zillow data

Will a rising tide sink all homes?

Nationwide, almost 1.9 million homes (or roughly 2 percent of all U.S. homes) worth a combined \$882 billion a risk of being underwater by 2100 if sea levels rise by six feet. Some states will be hit harder than others.

State	Number of Potentially Underwater Properties	Fraction of Total Housing Stock Underwater	Total Value of Pote Underwater Prop
California	42,353	0.44%	\$49.2B
Texas	46,804	0.61%	\$12B
New York	96,708	2.10%	\$71B
Florida	934,411	12.56%	\$413B
Pennsylvania	2,661	0.06%	\$730M
Georgia	24,379	0.75%	\$10.2B
North Carolina	57,259	1.64%	\$20.6B
New Jersey	190,429	7.35%	\$93.1B
Virginia	46,287	1.77%	\$14.4B
Washington	31,235	1.32%	\$13.7B
Massachusetts	62,069	3.10%	\$51.2B
Maryland	64,299	3.09%	\$19.6B
Alabama	12,735	0.77%	\$3.8B
South Carolina	83,833	4.42%	\$45B
Louisiana	80,080	5.88%	\$13.2B
Oregon	4,959	0.37%	\$1B
Connecticut	18,173	1.61%	\$13.2B
Mississippi	5,572	0.72%	\$1B
Hawaii	37,556	9.07%	\$25.3B
Maine	5,412	0.98%	\$3.1B
New Hampshire	4,064	0.71%	\$1.7B
Rhode Island	4,853	1.47%	\$2.9B
Delaware	11,670	3.09%	\$3.6B

Source: National Oceanic and Atmospheric Administration (NOAA); Zillow data

🖆 Zil

Joe Romm Follow Dr. Joe Romm is Founding Editor of Climate Progress, "the indispensable blog," as NY Times co... 4 days ago · 6 min read

The U.S. is about to lose a trillion dollars in coastal property values

Trump isn't helping.

Florida Coastal flooding. Credit: Florida Sea Grant, Dorothy Zimmerman/Flickr

Economic vulnerabilities

Vulnerabilities

Figure SR.A1: Climate change risks and opportunities for the natural environment

3.2: Terrestrial

Ne1: Risks to species and habitats due to inability to respond to changing climatic conditions Ne2: Opportunities from new species colonisations

3.5: Coasts

Ne11: Risks to aquifers, agricultural land and habitats from salt water intrusion

Ne12: Risks to habitats and heritage in the coastal zone from sea-level rise; and loss of natural flood protection

Natural Assets

3.3: Soils and Land

Ne3: Risks and opportunities from changes in agricultural and forestry productivity and land suitability Ne 4: Risks to soils from seasonal aridity and wetness Ne8: Risks of land management practices exacerbating flood risk Ne10: Risks to agriculture, forestry, wildlife and heritage from change in

frequency and/or magnitude of extreme weather and wildfire events

Ne6: Risks to agriculture and wildlife from water scarcity and flooding Ne7: Risks to freshwater species from higher water temperatures

3.6: Marine

Ne13: Risks to, and opportunities for, marine species, fisheries and marine heritage from ocean acidification and higher water temperatures

3.7: Cross-Cutting Issues

3.7.1: Pests and Diseases

Ne9: Risks to agriculture, forestry, landscapes and wildlife from pests, pathogens and invasive species

3.7.2: Natural Carbon Stores

Ne5: Risks to natural carbon stores and carbon sequestration

Source: CCRA2 Evidence Report, Chapter 3.

Notes: Numbers denote the sections of Chapter 3 discussing the issues presented.

Ne14: Risks and opportunities from changes in landscape character

Mitigation and Adaptation Studies

Class 15: Understanding Vulnerabilities:

Contents

- More on Risk, Vulnerability, Resilience, Adaptation (class 14)
- Vulnerabilities of the Planetary System (class 14)
 - Systemic vulnerabilities (class 14)
 - Land Cover Changes
 - Earth Energy Imbalance
 - Sea Level Changes
 - Pollution
 - Vulnerabilities of Homo Sapiens/the Anthroposphere - Health
 - Nexus (e.g., food-water-energy)
 - Economic vulnerabilities
 - Social vulnerabilities: inequality, injustice, unrest

Non-Human & Human Built Environment; Economy, Inequality & Injustice

Social vulnerabilities: inequality, injustice, unrest

Inequality in vulnerability and exposure

Vulnerabilities are distributed:

- uneven in space

Inequality in vulnerability and exposure

Vulnerabilities are distributed:

- uneven in space

Projected GDP loss due to rising temperatures

- Ghana
- Nigeria
- Indonesia
- Thailand
- Philippines
- Malaysia
- Sri Lanka
- Vietnam
- Cambodia
- Mexico
- India
- Bangladesh
- Pakistan
- Ethiopia
- Tanzania
- China

Percentage GDP lost by 2030

Inequality in vulnerability and exposure

Vulnerabilities are distributed:

- uneven in space

Inequality in vulnerability and exposure

Vulnerabilities are distributed:

- uneven in space

LETTERS

NATURE CLIMATE CHANGE DOL 10.1038/NCLIMATE1979

Table 1 | City ranking by risk (AAL) and relative risk (AAL in percentage of GDP) for 2005.

Ranking by AAL (US\$ million)				Ranking by relative AAL (percentage of city GDP)				
Urban agglomeration	100 year exposure	AAL, with protection (US\$ million)	AAL, with protection (percentage		Urban agglomeration	100 year exposure	AAL, with protection (US\$ million)	AAL, w protect (percer
			of GDP)					of GDP
Guangzhou	38,508	687	1.32%	1	Guangzhou	38,508	687	1.32%
Miami	366,421	672	0.30%	2	New Orleans	143,963	507	1.21%
New York—Newark	236,530	628	0.08%	3	Guayaquil	3,687	98	0.95%
New Orleans	143,963	507	1.21%	4	Ho Chi Minh City	18,708	104	0.74%
Mumbai	23,188	284	0.47%	5	Abidjan	1,786	38	0.72%
Nagoya	77,988	260	0.26%	6	Zhanjiang	2,780	46	0.50%
Tampa—St. Petersburg	49,593	244	0.26%	7	Mumbai	23,188	284	0.47%
Boston	55,445	237	0.13%	8	Khulna	2,073	13	0.43%
Shenzen	11,338	169	0.38%	9	Palembang	1,161	27	0.39%
Osaka—Kobe	149,935	120	0.03%	10	Shenzen	11,338	169	0.38%
Vancouver	33,456	107	0.14%	11	Hai Phòng	6,348	19	0.37%
Tianjin	11,408	104	0.24%	12	N'ampo	507	6	0.31%
Ho Chi Minh City	18,708	104	0.74%	13	Miami	366,421	672	0.30%
Kolkata	14,769	99	0.21%	14	Kochi	855	14	0.29%
Guayaquil	3,687	98	0.95%	15	Tampa—St. Petersburg	49,593	244	0.26%
Philadelphia	22,132	89	0.04%	16	Nagoya	77,988	260	0.26%
Virginia Beach	61,507	89	0.15%	17	Surat	3,288	30	0.25%
Fukuoka—Kitakyushu	39,096	82	0.09%	18	Tianjin	11,408	104	0.24%
Baltimore	14,042	76	0.08%	19	Grande_Vitória	6,738	32	0.23%
Jakarta	4,256	73	0.14%	20	Xiamen	4,486	33	0.22%

A comparison with a ranking by exposure is proposed in the Supplementary Information.

AL, with otection ercentage GDP) 32% 21% 95%

74% 72% 50% 47% 43% 39% 38% 37%

31% 30% 29% 26% 26% 25% 24% 23%

Inequality in vulnerability and exposure

Vulnerabilities are distributed:

- uneven in space

Figure 2 | The 20 cities where AAL increase most (in relative terms in 2050 compared with 2005) in the case of optimistic sea-level rise, if adaptation only maintains present defence standards or flood probability (PD). More information in Supplementary Table S7.

Table 2 | The 20 cities with the highest loss in 2050, assuming scenario SLR-1 and adaptation option that maintains flood probability (option PD).

	Scenarios with soci change alone (SEC)	o-economic	Scenarios with socio-economic change, subsidence, sea-lev rise and adaptation to maintain flood probability (scenarios SLR-1, and adaptation option PD)			
Urban agglomeration	AAL (US\$ million)	AAL (per- centage of city GDP)	AAL (US\$ million)	Increase in A AL compared with 2005 (%)	AAL (percentage	
Guangzhou (S)	11,928	1.32%	13,200	11%	1.46%	
Mumbai	6,109	0.47%	6,414	5%	0.49%	
Kolkata (S)	2,704	0.21%	3,350	24%	0.26%	
Guayaquil (S)	2,813	0.95%	3,189	13%	1.08%	
Shenzen	2,929	0.38%	3,136	7%	0.40%	
Miami	2,099	0.30%	2,549	21%	0.36%	
Tianjin (S)	1,810	0.24%	2,276	26%	0.30%	
New York—Newark	1,960	0.08%	2,056	5%	0.08%	
Ho Chi Minh City (S)	1,743	0.74%	1,953	12%	0.83%	
New Orleans (S)	1,583	1.21%	1,864	18%	1.42%	
Jakarta (S)	1,139	0.14 %	1,750	54%	0.22%	
Abidjan	826	0.72%	1,023	24%	0.89%	
Chennai (Madras)	825	0.12%	939	14%	0.14%	
Surat	905	0.25%	928	3%	0.26%	
Zhanjiang (S)	806	0.50%	891	11%	0.55%	
Tampa—St. Petersburg	763	0.26%	859	13%	0.29%	
Boston	741	0.13%	793	7%	0.14%	
Bangkok (S)	596	0.07%	734	23%	0.09%	
Xiamen (S)	572	0.22%	729	27%	0.29%	
Nagoya (S)	564	0.26%	644	14%	0.30%	

'S' indicates that the dty is prone to significant subsidence. Most of these dties are located in deltaic regions, where subsidence influences local sea level in 2050.

Inequality in vulnerability and exposure

Vulnerabilities are distributed:

- uneven in space

THE COMING FLOODS

Mean sea levels are rising around the globe, which is affecting the rate of floods in various locations. By 2050, some places (darker red dots) can expect to see what is currently considered a 100-year flood event recur as often as every one or five years on average. In other areas, today's 100-year events will not become more common or may even become rarer (light-blue dots), such as along Scandinavian coasts where the land is rising relative to the sea. Low-lying Pacific islands are among the most vulnerable to increased coastal flooding.

Estimated frequency by 2050 of today's 100-year floods (years) ● 1-2 ● 2-5 ● 5-10 ● 10-20 ● 20-50 ● 50-100 ● 100-10,000

T. Wahl et al. Nature Commun. http://dx.doi.org/10.1038/ncomms16075 (2017).

Inequality in vulnerability and exposure

Vulnerabilities are distributed:

- uneven in space
- uneven in time

Example: Since 1970, the number of people exposed to floods and tropical cyclones has doubled.

172 OXFAM BRIEFING PAPER

People in a waterside house raised on stilts in a slum in Manila. C Robin Hammond / Panos

NO ACCIDENT

Resilience and the inequality of risk

We need a new approach to risk and poverty reduction. Major external risks, such as climate change and food price volatility, are increasing faster than attempts to reduce them. Many risks are dumped on poor people, and women face an overwhelming burden. In many places of recurrent crises, the response of governments and the international aid sector is not good enough. A new focus on building resilience offers real promise to allow the poorest women and men to thrive despite shocks, stresses, and uncertainty - but only if risk is more equally shared globally and across societies. This will require a major shift in development work, which for too long has avoided dealing with risk. More fundamentally, it will require challenging the inequality that exposes poor people to far more risk than the rich.

Inequality in Climate and Global Change Impacts

Inequality in vulnerability and exposure

- Vulnerabilities are distributed:
 - uneven in space
 - uneven in time
 - uneven across societal groups

97% of people on low incomes have no insurance cover, and 90% of workers in least developed countries have no social security

172 OXFAM BRIEFING PAPER

People in a waterside house raised on stilts in a slum in Manila. © Robin Hammond / Panos

NO ACCIDENT

Resilience and the inequality of risk

We need a new approach to risk and poverty reduction. Major external risks, such as climate change and food price volatility, are increasing faster than attempts to reduce them. Many risks are dumped on poor people, and women face an overwhelming burden. In many places of recurrent crises, the response of governments and the international aid sector is not good enough. A new focus on building resilience offers real promise to allow the poorest women and men to thrive despite shocks, stresses, and uncertainty - but only if risk is more equally shared globally and across societies. This will require a major shift in development work, which for too long has avoided dealing with risk. More fundamentally, it will require challenging the inequality that exposes poor people to far more risk than the rich.

- uneven in space
- uneven in time
- uneven across societal groups
- uneven across generations

GUEST COLUMNIST

By Hans-Peter Plag Apr 20, 2014

The fifth assessment of the Intergovernmental Panel on Climate Change has a cogent message: The planet is on a path to a much warmer state.

This may not be very convenient for us. In fact, it may be catastrophic. Are there signs that we will make the changes necessary to mitigate climate change by any discernible amount? I am afraid there are not many.

Recently, after I had presented a talk on climate change, a young woman in the audience asked me: "What would you like to tell your 20-year-old self?" Of course, I have been thinking a lot about what "we" could do, but I never looked at it from this angle: What would I tell my 20-year-old self?

Inequality in vulnerability and exposure the Dirginian-pilot PilotOnline.com

Plag: A talk with a younger self

💽 Share 📑 🔽 in 👰 🔯 G+1 🖂 🚔

- uneven in space
- uneven in time
- uneven across societal groups
- uneven across generations

GUEST COLUMNIST

By Hans-Peter Plag Apr 20, 2014

The things I always want to hear are the truth, the facts, the options:

n The most likely single cause of premature death for young people today is an impact of climate change, such as heat waves, droughts, storms, food and water shortages, new sicknesses and pandemics, migration of large populations, civil unrest like in North Africa and Syria, and wars. If you worry about anything and want to do something to reduce your worries, you should focus on causes that can worsen climate change. Do everything you can to mitigate climate change and prepare for what cannot be mitigated. Even using conservative predictions of global warming, scientists have estimated that as many as 2 billion people could die prematurely because of climate change - mainly from extreme food scarcity by 2050. Of course, the risk is not distributed evenly over the globe, and people living in the poorer part of the world have a much higher chance to die prematurely. Such is the environmental justice of climate change.

Inequality in vulnerability and exposure the Dirginian-pilot PilotOnline.com

Plag: A talk with a younger self

- uneven in space
- uneven in time
- uneven across societal groups
- uneven across generations

By Hans-Peter Plag Apr 20, 2014

The things I always want to hear are the truth, the facts, the options:

global

cause of premature death for young people today is an impact of climate change, The most likely single cause of storms, food and water shortages, new sicknesses and pandemics, premature death for young people today is an vil unrest like in North Africa and Syria, and wars. If you worry about impact of climate change, such as heat waves, to reduce your worries, you should focus on causes that can worsen droughts, storms, food and water shortages, new an to mitigate climate change and prepare for what cannot be predictions of global warming, scientists have estimated that as many sicknesses and pandemics, migration of large naturely because of climate change - mainly from extreme food scarcity populations, civil unrest like in North Africa a not distributed evenly over the globe, and people living in the poorer part of and Syria, and wars. In higher chance to die prematurely. Such is the environmental justice of climate

+ extinction

Inequality in vulnerability and exposure the Dirginian-pilot PilotOnline.com

GUEST COLUMNIST

Plag: A talk with a younger self

Inequality and injustice between Species

Inequality and injustice between Species

IN THEATERS NOW - CHECK 'SCREENINGS' BELOW FOR A THEATER NEAR YOU

Directed by Chris Hegedus and D A Pennebaker The Filmmakers Who Brought You DONT LOOK BACK and THE WAR ROOM

UNLOCKING THE CAGE SCREENINGS GET INVOLVED "THOUGHTFUL, **COMPELLING & HEROIC!** The film made me proud to be a primate." - Jon Stewart WHO IS A LEGAL PERSON? **HE**

Inequality and injustice between Species

SUBSCRIBE

Chimps May Be Capable of Comprehending the Minds of Others

A gorilla-suit experiment reveals our closest animal relatives may possess "theory of mind"

f	y	ą,
Ľ	\times	4

SCIENTIFIC AMERICAN

English 🗸 Cart o Sign In

By Catherine Caruso on October 6, 2016 Véalo en español

Inequality and injustice between Species

the character of consciousness

david j. chalmers

What is consciousness? How can it be explained? Can there be a science of consciousness? What is the neural basis of consciousness? What is the place of consciousness in nature? Is consciousness physical or nonphysical? How do we know about consciousness? How do we think about consciousness? What are the contents of consciousness? How does consciousness relate to the external world? What is the unity of consciousness?

Chalmers, David J.. The Character of Consciousness (Philosophy of Mind) (p. xi). Oxford University Press. Kindle Edition.

