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Preliminaries

Complexity, creeping normalcy and conceit: sexy and
unsexy catastrophic risks

Author(s): Karin Kuhlemann , (School of Public Policy, University College London, London, UK)

Purpose

This paper aims to consider few cognitive and conceptual obstacles to engagement with global catastrophic
risks (GCRs).

Design/methodology/approach

The paper starts by considering cognitive biases that affect general thinking about GCRs, before questioning
whether existential risks really are dramatically more pressing than other GCRs. It then sets out a novel
typology of GCRs - sexy vs unsexy risks — before considering a particularly unsexy risk, overpopulation.

Findings

It is proposed that many risks commonly regarded as existential are “sexy” risks, while certain other GCRs
are comparatively “unsexy.” In addition, it is suggested that a combination of complexity, cognitive biases
and a hubris-laden failure of imagination leads us to neglect the most unsexy and pervasive of all GCRs:
human overpopulation. The paper concludes with a tentative conceptualisation of overpopulation as a
pattern of risking.

Kuhlemann, K., 2019. Foresight, Vol. 21(1), 35-52.
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Complexity, creeping normalcy and conceit: sexy and
unsexy catastrophic risks

Author(s): Karin Kuhlemann , (School of Public Policy, University College London, London, UK)

Before delving into the existential vs sub-existential and sexy vs unsexy dichotomies, it is useful to
consider three cognitive weaknesses|2] that hinder recognition, engagement and rational responses to
GCRs: probabilistic thinking, caring about people we cannot see and valuing the future.

First, and stating the obvious, GCRs are risks. Engaging with risks of any kind requires probabilistic
thinking, at which human beings in general are notoriously poor (Dawes, 2001; Tversky & Kahneman,
1974). We tend to inappropriately focus on specific rather than general information, neglecting base rates
(Tversky and Kahneman, 1982; Welsh and Navarro, 2012). We are prone to overestimating the probability
of positive events and underestimating the likelihood of negative ones (Sharot, 2011), in particular when
predicting what will happen to ourselves (Weinstein and Klein, 1995; Weinstein, 1980, 1989) or those we
care about (Kappes et al., 2018). We tend to be particularly optimistic in predicting outcomes that will not
be known for some time (Armor & Taylor, 2002, pp. 339-340), and our optimistic beliefs tend to persevere
even In the face of contrary evidence (Garrett and Sharot, 2017). Faced with information about a risk, we
tend to assume that it will not actually materialise, or that its consequences will not really be catastrophic.
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Other potential X-Events (see, €.g., John Casti, 2012):

e Solar Storms: could take out major parts of the power grids

* Pandemics: Black Death killed 30-60% of the population in impacted areas
e Despots: Genghis Khan eliminated 11.1% of global population

* Loss of Internet: Could have extreme societal and economic consequences
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The Data: Space-Based Observations
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The Data: Space-Based Observations
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The Data: Example Sea Level Changes

Geodetic Monitoring of Sea Level
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The Data: Example Sea Level Changes

Geodetic Monitoring of Sea Level
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BRITISH ANTARCTIC SURVEY A Crack.m an Antarctic Ice Shelf Grew
FILMED THIS 1500 FEET WIDE RIFT 17 Miles in the Last Two Months

By JUGAL K. PATEL FEB.7, 2017

A rapidly advancing crack in Antarctica’s fourth-largest ice
shelf has scientists concerned that it is getting close to a full
break. The rift has accelerated this year in an area already
vulnerable to warming temperatures. Since December, the
crack has grown by the length of about five football fields each

- day.

Larsen C
Ice Shelf

If Larsen C’s shelf front retreats past this line,
called the compressive arch, the shelf is likely to
collapse.

ANTARC TGS
PENINSULAZ*S
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People paddle and row through the flooded Barlow Market District of Sebastopol, California,
after an atmospheric river dumped inches of rain on the region in February, 2019.

ENVIRONMENT VIRAL EXPLAINER

‘Rivers in the sky’ are why California
is flooding

Atmospheric rivers move huge amounts of water through the air above us—

and dump rain and snow on land.

BY ALEJANDRA BORUNDA
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Unprecedented spring flooding expected in 25 states,

including Arkansas
Posted By Max Brantley on Fri, Mar 22, 2019 at 7:08 AM

click to enlarge

2019 U.S. Spring Flood Outlook
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Flooding isn't just a problem in Nebraska and some other states that have
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dominated recent news coverage. The New York Times notes Weather Service
findings that indicate 25 states, including Arkansas, could experience "major or
moderate" flooding this spring.
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Is climate change intensifying typhoons
in Asia?

In the past four decades, the frequency of category 4 and 5 typhoons increased

four-fold from a once-a-year occurrence to four times a year.

By Seth Borenstein, Associated Press | SEPTEMBER 5, 2016 [ I Save for later
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Is climate change intensifying typhoons
in Asia?

In the past four decades, the frequency of category 4 and 5 typhoons increased

Science..

Home

four-fold from a once-a-year occurrence to four times a ys¢

By Seth Borenstein, Associated Press | SEPTEMBER 5, 2016

News Journals Topics Careers

Science Science Advances  Science Immunology  Science Robotics  Science Signaling  Science Translational Medicine

SHA REPORT
. An unexpected disruption of the atmospheric

quasi-biennial oscillation

Scott M. Osprey’’, Neal Butchart?, Jeff R. Knight?, Adam A. Scaife?, Kevin Hamilton*, James A. Anstey”,
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Cycloneldai  Cyclone Idai death toll passes 750 with o N R e | /. Pungwe River

-~

more than 110,000 now in camps i s T2 e - TS G M * . Dondo

Devastated areas of Mozambique, Zimbabwe and Malawi brace for
the spread of waterborne diseases such as cholera and malaria

-

Agencies in Beira : - — L iV ale o A / SN 97 | ‘ > e R & N e,
Sun 24 Mar 2019 : e o . ) - »

19.53 EDT

Buzi River-.
_

f v 853§

''''''

19 March 2019 /- Pungwe River

A A local paddles past a woman at her home during floods after Cyclone Idai, in Buzi district,

putside Beira. Photograph: Siphiwe Sibeko/Reuters
e _Dondo

A Joaquin Joao Chidja, 16, dries his family photos on the roof of a commercial building in Buzi, Mozambique, where 1 -'OQL -
the death toll from the cyclone has now reached 446. Photograph: Yasuyoshi Chiba/AFP/Getty Images ~ y % p' .
-

S, L e

Cyclone Idai’s death toll has risen above 750 in the three southern African
countries hit 10 days ago by the storm, as workers try to restore electricity
and water and prevent an outbreak of cholera.

] - - 3 y ~ - vE BuziRiver

Guardian graphic. Source: Google Earth (before); Sam Bowers / University of Edinburgh (after)

Cyclone Idai brings
e devastation to
e Viozambique - visual

some of Mozambique's

most densely population

areas. Photograph: Adrien

: : .
Barbier/AFP/Getty Images glllde
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Flooding In Papua In March 2019

PACIFIC /| WEST PAPUA

Mass funeral for Papua flood

victims as death toll passes
100

L4353 pmon 21 March 2019 Share this ° 0 e e @

Mass burials are being planned as the death toll rises from the Sentani flash floods in
Indonesia's Papua Province.
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Australia’s north prepares for the worst as two
cyclones approach

By Emma Young and Chris McLennan
March 23,2019 — 2.01pm

f v = A A A

n View all comments

TODAY'S TOP STORIES

ASYLUM SEEKERS

Morrison's $9 billion proposal
that made Hockey 'hit the roof’

57 minutes ago
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Star candidate, controversial
doctor in battle to replace
Laundy in crucial seat

-

A satellite image shows twin Cyclone systems in the Australian top end, as at 1pm Saturday. Cyclone Veronica (left)
and Cyclone Trevor (right). BUREAU OF METEOROLOGY
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NEWS TECH HEALTH PLANET EARTH SPA

Live Science > Planet Earth

Territying Tornado Clusters on the
RISE
By Becky Oskin, Senior Writer | October 16, 2014 02:00pm ET

fs7

Tornadoes are touching down

W o In clusters more often than 50
years ago, a new study reports.
+1 On some days, more than 30
twisters strike the United
(& States.
S 57 Even as storms spawn more

tornadoes, there are fewer days
MORE~  Credit NOAA on which tornadoes occur,
according to the study,
published today (Oct. 15) in the
journal Science. Since the 1970s, the number of days with at least one EF-
1 tornado has dropped from a mean (or average) of 150 to 100.

"When people ask, 'Are we getting more tornadoes, are we getting fewer
tornadoes, are they later, are they earlier?’ — the answer to everything is
yes," said lead study author Harold Brooks, senior scientist at the National
Oceanic and Atmospheric Administration's Severe Storms Laboratory in

Norman, Oklahoma. http://www.livescience.com/48316-tornados-cluster-more-often.html
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Figure 7. Natural Hazards for the time period between 1980 and
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Table 4. Detailed disaster statistics for the period 1980 to 2008.

Data from http://www.preventionweb.net/english/professional/
statistics/. The database is the OFDA/CRED International Disaster

Database, maintained by University Catholique de Louvain,
Brussels, Belgium. Data version: v11.08. Damage is in million

US $. Hazards are ordered according to fatalities. A is the ratio of
fatalities to the affected population in percent. See Table 3 for a

caveat on the accuracy of the numbers.

Hazard Events Fatalities Damage Per year R
Drought 410 558,565 | 19,261 | 1,551,455122 | 53,498,452 76,949 2,653 0.036
BN Cyclone 1,211 | 402911 | 13893 | 496560639 | 17122781| 533371 @ 18,392 " 0.081
Z‘f"‘; Earthquake 706 385630 | 13,298 | 136,333,515| 4,701,156 | 351,079 = 12,106 0.283
Tsunami 18 229,551 7,916 2,481,879 85,582 10,046 0.346 9.249
Flood 2,887 195,843 6,753 |2,800,481,480 | 96,878,672 | 397334 = 13,701 0.007
Heatwave 126 89,889 3,100 4,614,411 159,118 21,990 758 1048
Fiaure 7. Natural Hazards for the time pariod botween 1080and IR LA 140 25197 869 4,080,791 140,717 2,871 | 99 0.617
z*?:gi‘,{,'“‘”,"”t‘:"'l't“"""“l‘o;dgat”:’se R | . dslide 366 20,008 690 7,031,523 242 466 6,060 209 0.285
Z”T‘mﬁl‘,’d:ii?“m's:’?%“ Cold wave 156 11,595 400 6,875,103 237,073 5902 = 204 0.169
S g S e e .
Tornado 182 4.780 165 12,710,204 438,283 31,511 1,087 0.038
e 73 3,532 122 69,637 2,401 807 28 | 5072
Plag ot al., 2015 Wild fire 294 1,666 57 5,766,092 198,831 42,807 1,476 0.029 .
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& HOME Q SEARCH Che New Jlork Times

The Opinion Pages ' op.ED cONTRIBUTOR

Boulder, Colo. — IMAGINE a future in which humanity’s accumulated

A New Dark Age Looms 1+ dom about Earth — our vast experience with weather trends, fish
By VLB, GAL AFRL 520 spawning and migration patterns, plant pollination and much more — turns
= increasingly obsolete. As each decade passes, knowledge of Earth’s past

A
- becomes progressively less effective as a guide to the future. Civilization

Eh e _;:f;?._‘ i i o . .
~ entersadarkagein its practical understanding of our planet.

AL L S

..
" i “



'Assessing Knowledge




'Assessing Knowledge

How solid is our knowledge?
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How solid is our knowledge? Example sea level rise
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How solid is our knowledge? Example sea level rise

Accepted knowledge in 2000:
Greenland: no significant contribution to sea
level rise

Antarctica: minor contribution

Main contribution: steric changes
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How solid is our knowledge? Example sea level rise

Accepted knowledge in 2000:
Greenland: no significant contribution to sea
level rise

Antarctica: minor contribution

Main contribution: steric changes

Gravity Recovery and Climate

Experiment (GRACE)



'Assessing Knowledge

Example sea level rise

Accepted knowledge in 2000:
Greenland: no significant contribution to sea

level rise
Antarctica: minor contribution
Main contribution: steric changes

How solid is our knowledge?

Net mass change since Jan 2003

Integratec Net Mass Change
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ABRUPT IMPACTS
OF CLIMATE CHANGE

ANTICIPATING SURPRISES

~ NATIONAL RESEARQH COUNCIL

S OR ErdNONL AN

National Research Council in 2013:
There is the potential for surprises and new extremes ...
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National Research Council in 2013:
There is the potential for surprises and new extremes ...

Already happening: Disappearance of late-summer Arctic sea ice

Arctic ice extent melt, 1979 - 2014

MARCH: 1979 |:|2014 SEPTEMBER: 1979 |:|2014

ABRUPT IMPACTS
OF QLESEREREE 1 AN G |

ANTICUPATING "SURPRISES

I NATIONAL RESEARGH CaURCIL

e OR MEFOANONL ACNETNS V"
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- ~ - .

Elliott, 2015
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Arctic sea ice shrinks to second lowest

m-&“&w W  level ever recorded

Th

cr ‘Tremendous loss’ of ice reinforces clear downward trend towards ice-free
summers due to effects of climate change

Sep 10
median extent
(1981-2010)
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ABRUPT IMPACTS
OF CLIMATE CHANGE

ANTICIPATING SURPRISES

NATIONAL RESEARGH COURCIL

ME ROATIONLL ACRETNES.

National Research Council in 2013:
There is the potential for surprises and new extremes ...

Already happening: Disappearance of late-summer Arctic sea ice
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. {National Research Council in 2013:
There is the potential for surprises and new extremes ...

= @ Already happening: Disappearance of late-summer Arctic sea ice

/ \ \\ Already happening: Increases in extinction threats
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. {National Research Council in 2013:
There is the potential for surprises and new extremes ...

Already happening: Disappearance of late-summer Arctic sea ice
Already happening: Increases in extinction threats

Disruption of Atlantic Meridional Overturning Circulation: unlikely in
the 21st century; but gradual chance could have severe
consequences

G 1

ABRUPT IMPACTS
OF QLSRR ANG L

ANTICIPATING SURPRISES

Greenland ice sheet: abrupt changes very unlikely in the 21st
century

.
-
,—_w
b . PR
M
~ g
—

= IWest Antarctic Ice Sheet: up to 4.8 m sea level rise; abrupt changes
' unlikely in the 21st century

3? fMost likely (low-probability) rapid impact: ocean acidification
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. {National Research Council in 2013:
There is the potential for surprises and new extremes ...

= @ Already happening: Disappearance of late-summer Arctic sea ice
/ : \ ‘\\\ Already happening: Increases in extinction threats

ABRUPT IMPACTS Disruption of Atlantic Meridional Overturning Circulation: unlikely in
OF CILIMATE CHANGE [the 21st century; but gradual chance could have severe
consequences

TICIPATING SURPRISES —— ——
~ IGreenland ice sheet. abrupt changes very unlikely in the 21st
e 1CENLUIL Y
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& awest Antarctic Ice Sheet* up to 4.8 m sea level rise; abrupt changes
| junlikely n- the 21st century

{Most likely (low-probability) rapid impact: ocean acidification
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May 12,2014:A large section of the mighty West
Antarctic ice sheet has begun falling apart ... That’s enough ice to raise
global sea level by more than |5 ft. (4.6 m)

W IThere is the puteiicice vor o) oo cis ievy SALIEMES ...

{

| & www.nytimes.com/2014/05/13/science/earth/collapse-ot-parts-of-west-antar@iie-ice-sheet-has-begun-scientists-say.htmi?_r=1 v @ O\‘ tﬂ
= SECTIONS & HOME Q SEARCH International New 1Jork Times A
}p, ‘K{' l === BY DEGREES NATIONAL BRIEFING | SOUTHWEST RETRO REPORT
SN Y Scientists Warn of Rising Amid Pipeline and Climatg % Looks Like Rain Again. Texas: Weather Aids Firefighters Agent Orange’s Long 1
E ‘\i‘\ Oceans From Polar Melt Debate, Energy-Efficiency, - And Again. Legacy, for Vietnam and L
! B RU P T l M P ! C T S N - ‘ Bill Is Derailed /,“i_ Veterans
: ‘ v “ " = ‘ . -h i
y L e SEE THE THREAT.
> ) PROTECT YOUR BUSINESS. LEARN HOW
- . N w _ A %=
ENVIRONMENT
. ® L] L
Scientists Warn of Rising|Oceans From Polar Melt
By JUSTIN GILLIS and KENNETH CHANG MAY 12, 2014
A large section ot the mighty West Antarctica ice sheet has begun falling apart and its
F continued melting now appears to be unstoppable, two groups of scientists reported
on Monday. If the findings hold up, they suggest that the melting could destabilize &
- neighboring parts ol the ice sheet and a rise in sea level ol 10 [eet or more may be " PROTECT
unavoidable in coming centuries. s > 5
&7 % »
24 Global warming caused by the human-driven release of greenhouse gases has helped 2 :
»
BELLE o .dmrahilin the ice sheet, thongh other factors may also he involved, the scientists :
NOW PLAYING said.
_ The rise ol the sea is likely w continue w be relatively slow [or the rest ol the 21st {FEAR“ How
NATIONAL RESEARGH CaURCIL : century, the scientists added, but in the more distant future it may accelerate markedly,

fo R MG ROATIONL ADREENGES. »
- . |

A \ A nytnow Y|

potentially throwing society into crisis.
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May 12,2014:A large section of the mighty West
L Antarctic ice sheet has begun falling apart ... That’s enough ice to raise
lobal sea level by more than |5 ft. (4.6 m

:Q'"}n‘ AR Lt ' 02 oy O I A0 o .y L4 Greenland will be far greater contributor to sea rise than expected
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May 18,2014: The glaciers of Greenland are likely to retreat
faster and further inland than anticipated .... .

Greenland will be Tar greae |

Major UCI-NASA work reveals long, deep valleys connecting ice

D the ocean

)
Irvine, Calif. = Greenland's icy reaches are far more vulnerable to Dcean waters from climate change than had been thought, according to new research by UC Irvine and NASA glaciologists. The work, Cgeb Long d !
published today in Nature Geoscience, shows previously unchartgd@Pep valleys stretching for dozens of miles under the Greenland Ice Sheet. ietnam an

The bedrock canyons sit well below sea level, meaning that g@@btropical Atlantic waters hit the fronts of hundreds of glaciers, those edges will erode much further than had been assumed and release far
greater amounts of water.

Ice melt from the subcontinent has already acceleratg#’as warmer marine currents have migrated north, but older models predicted that once higher ground was reached in a few years, the ocean-induced

melting would halt. Greenland's frozen mass wouldgftop shrinking, and its effect on higher sea waters would be curtailed.
"That turns out to be incorrect. The glaciers of&reenland are likely to retreat faster and farther inland than anticipated - and for much longer - according to this very different topography we've discovered

beneath the ice," said lead author Mathieu Morlighem, a UCI associate project scientist. "This has major implications, because the glacier melt will contribute much more to rising seas around the globe."”

To obtain the results, Morlighem developed a breakthrough method that for the first time offers a comprehensive view of Greenland's entire periphery. It's nearly impossible to accurately survey at ground level

A N T | C | PA T I N G S U R P R I S E S the subcontinent's rugged, rocky subsurface, which descends as much as 3 miles beneath the thick ice cap.

Since the 1970s, limited ice thickness data has been collected via radar pinging of the boundary between the ice and the bedrock. Along the coastline, though, rough surface ice and pockets of water cluttered
the radar sounding, so large swaths of the bed remained invisible.

Measurements of Greenland's topography have tripled since 2009, thanks to NASA Operation IceBridge flights. But Morlighem quickly realized that while that data provided a fuller picture than had the earlier
radar readings, there were still major gaps between the flight lines.

To reveal the full subterranean landscape, he designed a novel "mass conservation algorithm" that combined the previous ice thickness measurements with information on the velocity and direction of its

il movement and estimates of snowfall and surface melt.

.v...‘.'_.

-

.“ : The difference was spectacular. What appeared to be shallow glaciers at the very edges of Greenland are actually long, deep fingers stretching more than 100 kilometers (almost 65 miles) inland.
— —

»

"We anticipate that these results will have a profound and transforming impact on computer models of ice sheet evolution in Greenland in a warming climate,” the researchers conclude.

"Operation IceBridge vastly improved our knowledge of bed topography beneath the Greenland Ice Sheet," said co-author Eric Rignot of UC Irvine and NASA's Jet Propulsion Laboratory. "This new study takes a
quantum leap at filling the remaining, critical data gaps on the map."

wHH
Other co-authors are Jeremie Mouginot of UC Irvine and Helene Seroussi and Eric Larour of JPL. Funding was provided by NASA.
The team also reported stark new findings last week on accelerated glacial melt in West Antarctica. Together, the papers "suggest that the globe's ice sheets will contribute far more to sea level rise than
Global warming caused by the human-driven release of greenhouse gases has helped
BELLE to destahilize the ice sheet, thongh other factors may also he invalved, the scientists

NUW PLAYING said.

The rise ol the sea is likely w continue w be relatively slow [or the rest ol the 21st 2/“\RBOR ot s o
century, the scientists added, but in the more distant future it may accelerate markedly,

F8 " Nn - potentially throwing society into crisis. |
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May 12,2014:A large section of the mighty West
Antarctic ice sheet has begun falling apart ... That’s enough ice to raise
lobal sea level by more than |5 ft. (4.6 m

GCreenland will be far greater contributor to sea rise than expected

= —

May 18,2014: The glaciers of Greenland are likely to retreat

New study finds Antarctic lce Sheet unstable at end of last ice age

< | » | | + g hup://www.eurekalert.org/pub_releases/2014-05/0su-nsf052714.php C | (Q~ Google
[0 i Apple Wikipedia Google Maps Yahoo! News (739)v Popularv minev GEOSS URR

New study finds Antarctic Ice She... http:/ /svs.gsfc.nasa.gov/vis/a00... http:/ /svs.gsfc.nasa.gov/vis/a00...
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OF CLIMATE CHANGE .

New study finds Antarctic Ice Sheet unstable at end of last ice age

CORVALLIS, Ore. - A new study has found that the Antarctic Ice Sheet began melting about 5,000 vears eacliec than oraiic . oming out of the last ice age -
A N T | C | P A T I N G S U R P R | S E S and that shrinkage of the vast ice sheet accelerated during eight distinctaai

M= May 28, 2014: During that time, the
s sea level on a global basis rose about 50 feet in just

of debris during eight sep 3 5 O
The melting of the Antarctic Ice Si& ye a rs

"Conventional thinking based on past research is tha
decline was slow and steady until it reached its present size," salC

Results of this latest stug
Alfred-Wegener-Insti

The researchers €
Antarctica by mo
at the past beha

process, and that its

"The sediment record suggests a different pattern - one ore episodic and suggests that parts of the ice sheet repeatedly became unstable during the last deglaciation,” Weber added.

The research also provides the first solid evidencg
according to Peter Clark, an Oregon State

e Antarctic Ice Sheet contributed to what is known as meltwater pulse 1A, a period of very rapid sea level rise that began some 14,500 years ago,
paleoclimatologist and co-author on the study.

The largest of the eight episodic pu#®s outlined in the new Nature study coincides with meltwater pulse 1A.

"During that time, the seaTevel on a global basis rose about 50 feet in just 350 years - or about 20 times faster than sea level rise over the last century,” noted Clark, a professor in Oregon State's College of
Earth, Ocean, and Atmospheric Sciences. "We don't yet know what triggered these eight episodes or pulses, but it appears that once the melting of the ice sheet began it was amplified by physical processes."”

The researchers suspect that a feedback mechanism may have accelerated the melting, possibly by changing ocean circulation that brought warmer water to the Antarctic subsurface, according to co-author
Axel Timmermann, a climate researcher at the University of Hawaii at Manoa.

NATIONAL RESEARGH COURCIL

e OF MG RATONL ADRDENES.

£ _ % "This positive feedback is a perfect recipe for rapid sea level rise,"” Timmermann said.
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August 29, 2015:"The critical question thus becomes: Is
Greenland likely to lose even more ice than it’s currently losing per
year — and could Antarctica do the same?”

|

May 18, 2
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Tt Why NASA’sgSo0 worried that Greenland’s
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-7 Tha eritical question thus becomes: Is

Hansen et al,, 2015:%... Evidence ... that 2°C global warming is
highly dangerous.”
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@he Washington Post @he Washington Post

Energy and Environment )
Energy and Environment

Scientists find more reasons Dominoes fall: Vanishing

that Greenland will melt Arctic ice shifts jet stream,
faster which melts Greenland
By Chris Mooney glaCierS

[

[

By Chelsea Harvey
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Iceberg, with Mount Dundas in the background, Qaasuitsup, west Greenland,
Denmark. (Photo by DeAgostini/Getty Images)

Photograph of Torsukatat Avannarleq, a tidewater glacier in West Greenland,
with 2 vicible cediment nliimes at ite termintie Thece nliimes are made 11n of
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attribution: NASA Goddard
Cracks in the Greenland Ice Sheet let one of its aquifers drain to the ocean, new NASA research finds. The aquifers, discovered only recently, are
unusual in that they trap large amounts of liquid water within the ice sheet. Until now, scientists did not know what happened to the water
stored away in this reservoir -- the discovery will help fine tune computer models of Greenland’s contribution to sea level rise.

http://www.dailvkos.com/story/2017/2/20/1635162/-NASA-defies-Trump-s-doubts-on-climate-science-ldentifies-new-path-for-Greenland-meltwater-to-Ocean


http://www.dailykos.com/story/2017/2/20/1635162/-NASA-defies-Trump-s-doubts-on-climate-science-Identifies-new-path-for-Greenland-meltwater-to-Ocean
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How solid is our knowledge? Example sea level rise

Accepted knowledge in 2000:
Greenland: no significant contribution to sea
level rise

Antarctica: minor contribution

Main contribution: steric changes
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How solid is our knowledge?

Example sea level rise

Accepted knowledge in 2000:
Greenland: no significant contribution to sea
level rise

Antarctica: minor contribution

Main contribution: steric changes

Knowledge in 2016:

Greenland: is contributing, is accelerating;
increasing potential for a large contribution to
sea level rise due to deep warm water around
Greenland and impact of changes in atmospheric
circulation.

Antarctica: West Antarctic ice sheet (WAIS) will
contribute 4.5 m
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How solid is our knowledge?

6.0 m+y Greenland

4.3 M~ West Antarctic

Contribution to
Global Sea Level

Example sea level rise

Accepted knowledge in 2000:
Greenland: no significant contribution to sea
level rise

Antarctica: minor contribution

Main contribution: steric changes

Knowledge in 2016:

Greenland: is contributing, is accelerating;
increasing potential for a large contribution to
sea level rise due to deep warm water around
Greenland and impact of changes in atmospheric
circulation.

Antarctica: West Antarctic ice sheet (WAIS) will
contribute 4.5 m
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How solid is our knowledge?

6.0 m+y Greenland

4.3 M~ West Antarctic

Contribution to 300 Years'?
Global Sea Level

Example sea level rise

Accepted knowledge in 2000:
Greenland: no significant contribution to sea
level rise

Antarctica: minor contribution

Main contribution: steric changes

Knowledge in 2016:

Greenland: is contributing, is accelerating;
increasing potential for a large contribution to
sea level rise due to deep warm water around
Greenland and impact of changes in atmospheric
circulation.

Antarctica: West Antarctic ice sheet (WAIS) will
contribute 4.5 m
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How solid is our knowledge?

6.0 m+y Greenland

4.3 M~ West Antarctic

Contribution to 300 Years'?
Global Sea Level 100 Years?

Example sea level rise

Accepted knowledge in 2000:
Greenland: no significant contribution to sea
level rise

Antarctica: minor contribution

Main contribution: steric changes

Knowledge in 2016:

Greenland: is contributing, is accelerating;
increasing potential for a large contribution to
sea level rise due to deep warm water around
Greenland and impact of changes in atmospheric
circulation.

Antarctica: West Antarctic ice sheet (WAIS) will
contribute 4.5 m
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How solid is our knowledge?

6.0 m+y Greenland

4.3 M~ West Antarctic

Contribution to 300 Years'?
Global Sea Level 100 Years?

Example sea level rise

Accepted knowledge in 2000:
Greenland: no significant contribution to sea
level rise

Antarctica: minor contribution

Main contribution: steric changes

Knowledge in 2016:

Greenland: is contributing, is accelerating;
increasing potential for a large contribution to
sea level rise due to deep warm water around
Greenland and impact of changes in atmospheric
circulation.

Antarctica: West Antarctic ice sheet (WAIS) will
contribute 4.5 m

How worried should we be?
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How solid is our knowledge?

6.0 m+y Greenland

4.3 M~ West Antarctic

Contribution to 300 Years'?
Global Sea Level 100 Years?

Example sea level rise

Accepted knowledge in 2000:
Greenland: no significant contribution to sea
level rise

Antarctica: minor contribution

Main contribution: steric changes

Knowledge in 2016:

Greenland: is contributing, is accelerating;
increasing potential for a large contribution to
sea level rise due to deep warm water around
Greenland and impact of changes in atmospheric
circulation.

Antarctica: West Antarctic ice sheet (WAIS) will
contribute 4.5 m

How worried should we be?

What should we be worried about?
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Global mean sea level rise
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Global mean sea level rise Note: No accelerated qontribution from
1.0 PR Gree.nland and Antarctic ice sheets
2081-2100 considered
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Global mean sea level rise . %
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Global mean sea level rise »
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l Class 18: Knowing the Hazards: Climate Hazards, Public Health,
-ood-Water-Energy Nexus .. B

Contents:
- Preliminaries
— Climate Change and Sea Level Hazards




Climate Change and Sea Level Hazards

Hazards:
Changes in means: Changes in extremes: Changes in dynamics and chemistry:
- air temperature - Storms (hurricanes, typhoons, - ocean circulation
- precipitation tornados, thunderstorms) - atmospheric circulation
— wind field/circulation - Floods - ocean temperature
- evapotranspiration - Droughts - ocean acidification
- humidity - Heat Waves - s0il, air and water chemistry
- soil moisture - lce storms and snow ftall
- permafrost Changes in biosphere:
- sea and lake levels - ecosystem health and services
- Inundation - migration
— river runoft - Invasive species
— desertification - extinction
- Ice and snhow cover
Questions:

- How well do we know the past and current changes”

- How well do we understand the processes and causes”?

- How are the hazards potentially going to impact human and non-human systems?
- lo what extent can we predict or anticipate future changes?

- Do we have foresight in terms of what might happen?




Climate Change and Sea Level Hazards

Hazards:
Changes in means: Changes in extremes: Changes in dynamics and chemistry:
- air temperature - Storms (hurricanes, typhoons, - ocean circulation
- precipitation tornados, thunderstorms) - atmospheric circulation
— wind field/circulation - Floods — ocean temperature
- evapotranspiration - Droughts - ocean acidification
- humidity - Heat Waves - s0il, air and water chemistry
- soil moisture - lce storms and snow ftall
- permafrost Changes in biosphere:
- sea and lake levels - ecosystem health and services
- Inundation - migration
— river runoft ' 0 [

- desertification

- Ice and snow cover

Questions:
- How well do we know the past and current
- How well do we understand the processes and Causes’?
- How are the hazards potentially going to impact human and non-human systems?
- lo what extent can we predict or anticipate future changes?
- Do we have foresight in terms of what might happen?

Processes
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‘Understanding the Processes

What causes the sea level to change?

Terrestrial water storage,
extraction of groundwater,

building of reservoirs,
change% in runoff, and Surface and deep ocean

seepage into aquifers circulation changes, storm surges

Subsidence in river

delta region, As the ocean warms,
land movements, and the water expands

tectonic displacements

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Exchange of the water
stored on land by
glaciers and ice sheets
with ocean water
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‘Understanding the Processes

Local sea level is the result of many
local, regional and global processes
and can only be fully understood in a
complex-system approach
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‘Understanding the Processes

LSL = short-period part + long-period part

Separation at a period of about 2 months:

A High-frequency part of LSL equation:

hist = w(t) + hisaal(t) + Ratmes(t) + Asciches(t) + Resunamilt)-

i Important for projection of maximum flood levels
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Separation at a period of about 2 months:
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LSL = short-period part + long-period part

Separation at a period of about 2 months:

High-frequency part)of LSL equation:

h-hft — w(t) + h-t.ida](t) T h'atnuxs'(t) T h’Soit‘hOS(t) T hts“n*‘mi(t)'

Important for projection of @um ﬂood@

Short-period variations are the result of local to regional processes
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LSL = short-period part + long-period part

N: nodal tide

S steric changes

C': changes in ocean currents

A: changes in atmospheric circulation

F': freshening

I: changes in the mass of the large ice sheets
(G: changes in continental glaciers

1'": changes in terrestrial hydrosphere

P: postglacial rebound
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LSL = short-period part + long-period part

Low-Frequency part of the LSL equation:

. N: nodal tide
S steric changes
& (' changes In ocean currents
B A changes in atmospheric circulation
F': freshening
I: changes in the mass of the large ice sheets
i G changes in continental glaciers
1'": changes in terrestrial hydrosphere
& [: postglacial rebound
B V) : secular vertical land moti

Important for projections of LSL
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SL=-—short-period part + long-period part
of the LSL equation:

. N: nodal tide
S steric changes
& (' changes In ocean currents
B A changes in atmospheric circulation
F': freshening
I: changes in the mass of the large ice sheets
i G changes in continental glaciers
1'": changes in terrestrial hydrosphere
& [: postglacial rebound
B V) : secular vertical land moti

Imortantfo prjectios of LL
Long-period variations-are therésult of local to global processes
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SL=-—short-period part + long-period part
of the LSL equation:

-

ohm(Z,t) = N(Z,t) + 5(z,t) + C(Z,t) + F(X,t) + A(Z, t) +
I(z, ) (ilr,t)+T(f?t)+P(f)( —to) +
Vo(Z)(t — to) + OV (T, t) + B(Z,

- IN: nodal tide
S steric changes
¢ (. changes in ocean currents
8 A: changes in atmospheric circulation
F': freshening
B /: changes in the mass of the large ice sheets
i G changes in continental glaciers
B 7 changes in terrestrial hydrosphere changes (exchange and redistribution)
& P postglacial rebound and LSL

Comments on the relation between mass



