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Impacts on the Earth’s Lite-Support System
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Homo sapiens and Earth

Spectrum of Possible Futures

Yuval Noah Harari
— New York Times Bestselling

Author of Sapiens

NATIONAL BESTSELLER

“THE COLLAPSE'OF
\WESTERN CIVILIZATION

A VIEW FROM THE FUTURE

= OM_L_OR SKES"AnD ERIK *° 5" "™

| 0¥ Scientists
- QQ Warning.org Select Language

Our Planet’s

Fight for Life

EDWARD O. A Brief History o

WI L S O N of Tomorrow

WINNER OF THE PULITZER PRIZE

Deep Adaptation

Deep Adaptation

This blog post includes the following:

¢ An opportunity to learn about and understand the term “Deep Adaptation”. The term
. . . comes from the paper Deep Adaptation: A Map for Navigating Climate Tragedy by Jem
S C I e n C e — b a S e d Wa r n | n g S to h u m a n | ty Bendell, which has greatly changed the landscape of what we are doing in the
Scientists’' Warning Initiative. An excerpt from the abstract of this paper follows;
however, the reader is urged to take the time to read the full content of the paper by
clicking the link. Note: There is a link at the bottom of this post where you can

Deep Adaptathn Preparlng fOr the tlme aﬂ:er the 'I:Ota‘ download the full resolution Deep Adaptation Badge image.

¢ Anote from Alison Green, a member of Scientists' Warning's

social collapse - Who do we want to be then? s St e et Cron e B

Commission in Brussels. A video of the actual presentation given
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Homo sapiens and Earth
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Earth: Life-Support System for many species
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Planetary Physiology LIFE SUPPORT
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Flows in the Earth System also allow assessing
the "Health of the Planet”

Earth: Life-Support System for many species

Everything Is about Flows

v

{

Limitations in the flows
between a community and its life-
support system limit the growth of the
community

For Homo sapiens, the flows are
regulated by ethical, social, and - recently -
economic rules
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Planetary Physiology LIFE SUPPORT

Flows in the Earth System also allow assessing
the "Health of the Planet”

Earth: Life-Support System for many species

Everything Is about Flows

SOCIELY

Flows have accelerated In
the last 200 years
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FLOWS

Understanding Modern Global Change is all about Flows
-lows have accelerated in the last 200 years

Many new flows have been createo






. Based on Feedbe

400 million tons (Mt)

f 448 million tons produced in 2015

Total

A LIFETIME OF
PLASTIC

The first plastics made
from fossil fuels are just
over a century old. They
came into widespread
use after World War Il
and are found today in
everything from cars to
medical devices to food
packaging. Their useful
lifetime varies. Once
disposed of, they break
down into smaller
fragments that linger for
centuries.

JASON TREAT AND RYAN WILLIAMS, NGM STAFF
SOURCE: ROLAND GEYER, UNIVERSITY OF
CALIFORNIA, SANTA BARBARA

Growthin Asia —m——————

As the economies Iin Asia

grow, so does demand for

consumer proaQucis—=ana 400
plastics. Half the world’s

plastics are made there,

20 percent In China. 2008 recession

Global plastic
production by industry
in millions of tons

Legacy of World War ||

Shortages of natural 200
materials during the
war led to a search for
synthetic alterna
tives—and to an expo
nential surge in plastic
production that
continues today
10(
1973 oil crisis

v

Other
52 million
includes health care and agriculture

5 years < The average tlme plastlcs are

Buildingand ¢
72 million

ARNNNRNRNARNNEN

- \\1 Avera ge usetime:

ENNNNNNNNNN 35 years > years

Industrial machinery

2 million

AENRRRNERNRNERERENR ars

Transportation

30 million Build.+Const.: 72 Mt, 35 yrs
R Gy Industrial mach.: 3 Mt, 20 yrs
%‘-‘“{Iica' ~ Transportation: 30 Mt, 13 yrs
":“.;o.n. 8 yeans ~— Electrical: 19 Mt, 8 yrs
Tetil Textiles: 65 Mt, 5 yrs
6§x,:,'i|ﬁf,n Consum. prod.: 46 Mt, 3 yrs
HEREN 5 years Packaging: 161 Mt, <0.5 yrs
Consumer products

46 million

BBl 3 years

Packaging

161 million
| Less than six

The largest market Tor i2=*ies today is

for packaging materials. That trasnhm
accounts for nearly half of all plastic waste y
generated globally; most of it never gets

recycled or incinerated.

I
|61 Mt < 6 months

https://www.nationalgeographic.com/magazine/2018/06/plastic-planet-waste-pollution-trash-crisis/
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Consumer products
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1973 oil crisis

LIFETIMES: Ty
100 to 5000 years
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for packaging materials. That trash nw..
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generated globally; most of it never gets |61 Mt < 6 months

recycled or incinerated.






An Island Crusader Takes On The
Big Brands Behind Plastic Waste

January 15, 2019 AME

waste washes in from Manda Bay and the ocean, covering the &

Aele
N



Dead whale found with 115 plastic cups, 2 flip-flops
in its stomach

" f ¥ & in

Detritus also included more than 1,000 other plastic pieces, including plastic bags,
bottles

The Associated Press - Posted: Nov 20, 2018 9:03 AM ET | Last Updated: November 20







Excretion Biomagnification

Plastics and micro plastics
in the marine food web ...

i———

Bioaccumulation Bioconcentration

Ingestion Inhalation

d-x <<



i Excretion Biomagnification
Plastics and micro plastics
in the marine food web ...

.. comes back to humans

—

Bioaccumulation Bioconcentration

Ingestion Inhalatlon
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FLOWS

Understanding Modern Global Change is all about Flows
-lows have accelerated in the last 200 years

Many new flows have been createo

Many flows have been changed or interupted
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Out of Scale Scaling law for metabolic rate:

human: Y = 50 -100 Watt
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Out of Scale Scaling law for metabolic rate:

human: Y = 50 -100 Watt
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Out of Scale Scaling law for metabolic rate:

human: Y = 50 -100 Watt

Yo~ 3 for Homothermics

M = 2 kg->Y = 5 Watt
M = 80 kg ->Y = 80 Watt
M= 5000 kg ->Y = [|,780 Watt
M = 10000 kg ->Y = 3,000 Watt
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Out of Scale Scaling law for metabolic rate:

human: Y = 50 -100 Watt
=t @ Yo~ 3 for Homothermics
M = 2 kg->Y = 5 Watt
M = 80 kg ->Y = 80 Watt

M= 5000 kg ->Y = 1,780 Watt
M = 10000 kg ->Y = 3,000 Watt

Metabolic Rate

1

£
T

——
o
-

.4
<
-

Extended metabolic rate:
YE=Y + (e
(Ce: total energy consumption)

Metabolic Rate (kcail/hr)

=
'
-

Energy consumption per capita:
Global Average: Ye = 2,835 Watt
M ~ 10 metric tons
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Earth’'s Energy Imbalance
Incoming 1 0'1 0-1 0'9 Outgoing

Solar Radiation

Storage in fossil fuels

Imbalance on the order of 10-10-10-°
Last 200 Million years

Total energy storage in 200 Myrs:
Order 100-1000 Zetadoules

glgg:ling 3x1 0'3 Outgoing

Radiation

Storage in heat
Imbalance on the order of 3x10-3

Last 70 years

Total energy storage per century:
Order 1000 Zetadoules




‘Based on Feedback: The Earth’s Life-Support System and sustainability

Earth’'s Energy Imbalance
Incoming 1 0'1 0-1 0'9 Outgoing

Solar Radiation

Storage in fossil fuels

Imbalance on the order of 10-10-10-°
Last 200 Million years

Total energy storage in 200 Myrs:
Order 100-1000 Zetadoules

EE/:1——?

O: Outgoing (heat) radiation
[.  Incoming (solar) radiation

g\;(;l:ling 3x1 0'3 Outgoing

Radiation

Storage in heat
Imbalance on the order of 3x10-3

Last 70 years

Total energy storage per century:
Order 1000 Zetadoules




‘Based on Feedback: The Earth’s Life-Support System and sustainability

Earth’'s Energy Imbalance
Incoming 1 0'1 0-1 0'9 Outgoing Incoming 3X1 0'3 Outgoing

Solar Radiation Solar Radiation

Storage in fossil fuels |
Storage in heat

Imbalance on the order of 10-19-10-9 Imbalance on the order of 3x10-3
Last 200 Million years Last 70 years
Total energy storage in 200 Myrs: Total energy storage per century:
Order 100-1000 Zetadoules Order 1000 Zetadoules
EEI=1 - 19 EEl = 10-10: 0.0000000001
/ = 103: 0.001

O: Outgoing (heat) radiation
[.  Incoming (solar) radiation




‘Based on Feedback: The Earth’s Life-Support System and sustainability

Earth’'s Energy Imbalance
Incoming 1 0'1 0-1 0'9 Outgoing Incoming 3X1 0'3 Outgoing

Solar Radiation Solar Radiation

Storage in fossil fuels |
Storage in heat

Imbalance on the order of 10-19-10-9 Imbalance on the order of 3x10-3
Last 200 Million years Last 70 years
Total energy storage in 200 Myrs: Total energy storage per century:
Order 100-1000 Zetadoules Order 1000 Zetadoules

nternational System of Units:
-nergy: Joules

EE/=1-29 EE/=10-19:0.0000000001  Power: Energy/time: Joules/s = Watt
/ = 10-: 0.001 1 Watt * 1 s =1 Joules

O: Outgoing (heat) radiation Giga: 10° —xa: 1078

[ Incoming (solar) radiation Tera: 1012 Zeta: 102

Peta: 101°
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carth's Energy Impalance nternational System of Units:
Total energy storage in 200 Myrs: —nergy: Joules
Order 100-1000 ZetaJoules Power: Energy/time: Joules/s = Watt
EEN=10719-107 - 1 Watt *1s = 1 Joules
[ ~ 10° TeraWatt ~ 1017 Watt (solar irradiation)
Giga: 10° —xa: 1078
P=EElI" [~ 107 -108 Watt Tera: 1072 /Zeta: 102
(P: power of energy storage on the planet) Peta: 1015

200 Myrs = 200,000,000 * 31,557,600 s

200 Myrs *P =6,311,520,000,000,000 * 10,000,000 Joules
= 63,115,200,000,000,000,000,000
~ 63 Zetadules ~ 100 Zetadules

Humanity: 20 Tera\Watt,

-nergy in 100 yrs:

- =100 * 31,557,600 s * 20,000,000,000,000 Watt

= 063,115,200,000,000,000,000,000 ~ 100 Zetadules




Mitigation and Adaptation Studies

Class 2: The Syndrome of Modern Global Change: Baseline

Contents:
- Homo sapiens: An Exceptional Success Story (continued from class 1)
- Baseline




The Baseline: Past Climate and Global Change




The Baseline: Past Climate and Global Change

Climate Change is a long-term shift in the
statistics of weather - averages,

frequency and magnitude of extremes.



The Baseline: Past Climate and Global Change

Climate Change is a long-term shift in the
statistics of weather - averages,

frequency and magnitude of extremes.

Climate is determined by:
eincoming radiation (sun)
orcflected radiation (albedo)
erctained heat (Greenhouse gases)



The Baseline: Past Climate and Global Change

Climate Change is a long-term shift in the
statistics of weather - averages,

frequency and magnitude of extremes.

Climate is determined by:
eincoming radiation (sun)
orcflected radiation (albedo)
erctained heat (Greenhouse gases)

Climate can change from local to global
scales.
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Climate Change is a long-term shift in the
statistics of weather - averages,
frequency and magnitude of extremes.

Climate is determined by:
eincoming radiation (sun)
orcflected radiation (albedo)
erctained heat (Greenhouse gases)

Climate can change from local to global
scales.

Climate can change a lot over time.

(a) CO,, CH, and Sea Level CH, SL
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Climate Change is a long-term shift in the
statistics of weather - averages,
frequency and magnitude of extremes.

Climate is determined by:
eincoming radiation (sun)
orcflected radiation (albedo)
erctained heat (Greenhouse gases)

Climate can change from local to global
scales.

Climate can change a lot over time.
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Climate Change is a long-term shift in the

statistics of weather - averages, @ CO,. CH, and Sea Level —_—
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Clima* High correlation ~d-term shift in the

St between QGS, o (a) CO,, CH,4 and Sea Level CH, SL
fre - atmospheric CO2 and 'f extremes (opm - €O, | | | (ppb) (m)
global mean air temperature - e — iy PO . 1
. - sea level and mean 250 I NN ARy ! '\
Cl , VRN TR W R 500 -50
global air temperature < 200 | : % W -
®INCO n) 800 700 600 500 400 300 200 100 0"
. (b i rei
ercflected radiation (albedo) N T
: O Greenhouse Gases »
erctained heat (Greenhouse gases) <l M \\ A \ oy _
: E: ” - ‘“ \\ “., ‘ W/

Climate can change from local to global é' ‘

"800 700 600 500 400 300 200 100 0
scales. (c) Temperature Change

2 Observations | | |
Climate can change a lot over time. _ ol e T A \

= - \ ) / , \'- " v | ‘wl ,"\.,
4l 1 A Ny t A B\ .
800 700 600 500 400 300 200

Time (ky BP)



The Baseline: Past Climate and Global Change




The Baseline: Past Climate and Global Change

vasa EARTH () BSERVATORY

Where every day is Earth Day

Home Image

SVANTE ARRHENIUS (1859-1927)

Arrhenius did very little research in the fields of
climatology and geophysics, and considered any work in
these fields a hobby. His basic approach was to apply
knowledge of basic scientific principles to make sense of
existing observations, while hypothesizing a theory on
the cause of the “Ice Age.” Later on, his geophysical
work would serve as a catalyst for the work of others.
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In 1895, Arrhenius presented a paper to the Stockholm
Physical Society titled, “On the Influence of Carbonic

vasa EARTH ) BSERVATORY

Where every day is Earth Day

Home Image

SVANTE ARRHENIUS (1859-1927)

Arrhenius did very little research in the fields of
climatology and geophysics, and considered any work in
these fields a hobby. His basic approach was to apply
knowledge of basic scientific principles to make sense of
existing observations, while hypothesizing a theory on
the cause of the “Ice Age.” Later on, his geophysical
work would serve as a catalyst for the work of others.

Acid in the Air upon the Temperature of the Ground.”
This article described an energy budget model that
considered the radiative effects of carbon dioxide
(carbonic acid) and water vapor on the surface
temperature of the Earth, and variations in atmospheric
carbon dioxide concentrations. In order to proceed with
his experiments, Arrhenius relied heavily on the
experiments and observations of other scientists,
including Josef Stefan, Arvid Gustaf Hogbom, Samuel
Langley, Leon Teisserenc de Bort, Knut Angstrom,
Alexander Buchan, Luigi De Marchi, Joseph Fourier,
C.S.M. Pouillet, and John Tyndall.

Arrhenius argued that variations in trace constituents—
namely carbon dioxide—of the atmosphere could greatly
influence the heat budget of the Earth. Using the best
data available to him (and making many assumptions
and estimates that were necessary), he performed a
series of calculations on the temperature effects of
increasing and decreasing amounts of carbon dioxide in
the Earth's atmosphere. His calculations showed that
the “temperature of the Arctic regions would rise about
8 degrees or 9 degrees Celsius, if the carbonic acid
increased 2.5 to 3 times its present value. In order to get
the temperature of the ice age between the 40th and
50th parallels, the carbonic acid in the air should sink to
0.62 to 0.55 of present value (lowering the temperature
4 degrees to 5 degrees Celsius).”
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REMARKABLE WEATHER
OF 1911

The Effect of the Combustion
of Coal on the Climate — What
Scientists Predict for the Future

| =

By FRANCIS MOLENA

HE year 1911 will long be re- The mean temperature of every month _
membered for the violence of its except November was above the aver- Popular Mechanics,
\}'L:Z.ltl.lL‘I:. _ ']:hc s.prit‘lg opened n'li.l(l and age of th:u_nf tl}c 10 _\'tfl'rs'cn.\'crgd by March 1912, 393-342
‘It Is largely the courageous, enterprising, and ingenious American whose brains
are changing the world. Yet even the dull foreigner, who burrows in the earth by the
faint gleam of his miner's lamp, not only supports his family and helps to feed the
consuming furnaces of modern industry, but by his toil in the dirt and darkness adds
to the carbon dioxide in the earth's atmosphere so that men in generations to come

shall enjoy milder breezes and live under sunnier skies.”
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Earth's energy Imbalance is the difference between the amount of solar energy absorbed by Earth
and the amount of energy the planet radiates to space as heat.
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Earth's energy Imbalance is the difference between the amount of solar energy absorbed by Earth
and the amount of energy the planet radiates to space as heat.

Earth’s Energy Imbalance: EIl = Solar irradiance - Released Energy
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Earth's energy Imbalance is the difference between the amount of solar energy absorbed by Earth
and the amount of energy the planet radiates to space as heat.

Earth’s Energy Imbalance: EIl = Solar irradiance - Released Energy

El > 0: Global Warming ¢
El < 0: Global Cooling . ‘
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Earth's energy Imbalance is the difference between the amount of solar energy absorbed by Earth
and the amount of energy the planet radiates to space as heat.

Earth’s Energy Imbalance: El = Solar irradiance - Released Energy é

El > 0: Global Warming
El < 0: Global Cooling
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Earth's energy Imbalance is the difference between the amount of solar energy absorbed by Earth
and the amount of energy the planet radiates to space as heat.

Earth’s Energy Imbalance: EIl = Solar irradiance - Released Energy

El > 0: Global Warming
El < 0: Global Cooling

Some sunlight is

bounced back
What can change?

iInto space
e Solar irradiance can change
Currently: 1366+1 W/m2 (~240 W/m2)
e Reflected radiation can change (albedo) ~ Some heat
e Absorbed energy can change :f\t:)e!sepaasceed

e | ongterm EIl: 0.0000001-0.0000003 W/m?2
¢ 10,000 years El: #0.01 W/m?=
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Earth's energy Imbalance is the difference between the amount of solar energy absorbed by Earth
and the amount of energy the planet radiates to space as heat.

Earth’s Energy Imbalance: EIl = Solar irradiance - Released Energy

With increasing

El > 0: Global Warming Greenhouse gases,
_ more heat is stored
El < 0: Global Cooling in atmosphere

Some sunlight is

bounced back
What can change?

iInto space
e Solar irradiance can change
Currently: 1366+1 W/m2 (~240 W/m2)
e Reflected radiation can change (albedo) Some heat
e Absorbed energy can change o :f\tge!sepaasceed

e | ongterm EIl: 0.0000001-0.0000003 W/m?2
¢ 10,000 years El: #0.01 W/m?=
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Earth's energy imbalance is the difference between the amount of solar energy absorbed by Earth
and the amount of energy the planet radiates to space as heat.

Earth’s Energy Imbalance: El = Solar irradiance - Released Energy

With increasing

El > 0: Global Warming Greenhouse gases,
_ more heat is stored
El < 0: Global Cooling in atmosphere

Some sunlight is

bounced back
What can change?

Into space
e Solar irradiance can change
Currently: 1366+1 W/m2 (~240 W/m2)
e Reflected radiation can change (albedo) Some heat
e Absorbed energy can change :f\t:)elsepaasceed

e Longterm EI: 0.0000001-0.0000003 W/m?
e 10,000 years El: +0.01 W/m?2

e Current El: ~0.6 W/m?

Some heat is
absorbed by
Greenhouse gases
(CO2, CH4, H20, ...)

Less heat is released to
space and stored in |
ocean and hydrosphere
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Solar irradiance in the era of accurate satellite data. Left scale is the energy passing
through an area perpendicular to Sun-Earth line. Averaged over Earth's surface the
absorbed solar energy is ~240 W/mZ2, so the amplitude of solar variability is a forcing of
~0.25 W/ma2. (Credit: NASA/GISS)
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Medical Lab Sheet

Comprehensive Metabolic Panel
Glucose (fasting): 125 mg/dL

NORMAL

PREDIABETES
100 to 125

MAY INDICATE DIABETES

YOU: 125

Vitamin D
Total vitamin D: 22 ng/mL

DEFICIENCY

INSUFFICIENCY
20 to 30

SUFFICIENCY

YOU: 22

Complete Blood Cell Count (CBC) normal for all 20

values, including white blood cell count (a high count can indicate infection).

Urinalysis
Normal for all 20 values, including color, appearance, and protein.

Endocrinology Normal for TSH, which is an indicator of thyroid

function, and for microalbumin and creatinine, measures of kidney function.

Chemistry Normal for iron, transferrin saturation, and ferritin. (Abnormal
levels could indicate anemia, hepatitis, or other problems.)

Lipid Profile

Total cholesterol:

DESIRABLE

211 mg/dL

BORDERLINE HIGH

HDL (*good" cholesterol): 46 mg/dL

Low NORMAL
<50 >50
YOU: 46
LDL (“bad" cholesterol): 165 mg/dL
NEAR-
OPTIMAL OPTIMAL BORDERLINE  HIGH VERY HIGH

Triglycerides: 160 mg/dL

OPTIMAL

BORDERLINE
150 to 199

YOU: 160

YOU: 165

HIGH VERY HIGH
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Long-term (centuries to millennia)
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