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Abstract

This paper proposes a review of the development and use of multi-agent simulations (MAS) for ecosystem management.
The use of this methodology and the associated tools accompanies the shifts in various paradigms on the study of ecological
complexity. Behavior and interactions are now key issues for understanding and modeling ecosystem organization, and models
are used in a constructivist way. MAS are introduced conceptually and are compared with individual-based modeling approaches.
Various architectures of agents are presented, the role of the environment is emphasized and some computer tools are presented.
A discussion follows on the use of MAS for ecosystem management. The strength of MAS has been discussed for social sciences
and for spatial issues such as land-use change. We argue here that MAS are useful for problems integrating social and spatial
aspects. Then we discuss how MAS can be used for several purposes, from theorization to collective decision-making support.
We propose some research perspectives on individual decision making processes, institutions, scales, the credibility of models
and the use of MAS. In conclusion we argue that researchers in the field of ecosystem management can use multi-agent systems
to go beyond the role of the individual and to study more deeply and more effectively the different forms of organization (spatial,
networks, hierarchies) and interactions among different organizational levels. For that objective there is considerably more fruit
to be had on the tree of collaboration between social, ecological, and computer scientists than has so far been harvested.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, several researchers have started to use
multi-agents systems, also called agent-based model-
ing, in different fields. Researchers in ecology or eco-
nomics use this methodology and the associated tools
for ecosystem management. If a history of multi-agent
systems were to be written over the coming years,
those authors would certainly situate the birth of this
approach and its formative years in the rich breeding
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ground of the interdisciplinary movement. Originally,
multi-agent systems came from the field of artificial in-
telligence (AI). At first, this field was called distributed
artificial intelligence (DAI); instead of reproducing the
knowledge and reasoning of one intelligent agent as in
AI, the objective became to reproduce the knowledge
and reasoning of several heterogeneous agents that
need to coordinate to jointly solve planning problems.
Some researchers have focused more on the agent and
its autonomy (for instance, the definition of an agent
proposed byWooldridge (1999): “an agent is a com-
puter system that is situated in some environment, and
that is capable of autonomous action in this environ-
ment in order to meet its design objectives”), while
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others, engaged in the field of multi-agent systems,
have focused more on the organization of multiple
agent interactions (Huhns and Stephens, 1999). Then,
these later researchers met other researchers coming
from other communities in social and life sciences.
They also met groups from Artificial Life (Langton,
1988), a field which was developed more on the ba-
sis of physics and the general context of the sciences
of complexity, which re-examined scientific questions
by studying the interactions between elementary enti-
ties and their mode of organization. On the one hand,
multi-agent systems provide a method to reformulate
certain questions in the social and natural sciences. On
the other hand, researchers in the field of computer
sciences used several concepts from social sciences:
cognitive psychology and game theory to rationalize
the strategies used in establishing relations with other
agents; sociology to define the modes of interaction
between individuals and society, and linguistics to pro-
vide the agents with language and to organize commu-
nication protocols. Nowadays, one issue is that of the
interactions of agents with a collective environment.
Among the scientific disciplines mobilized to examine
this problem, ecology, for which the environment is a
fundamental notion, could play a key role in specify-
ing concepts and developing appropriate tools.

Various groups have emerged from the rich breed-
ing ground of the interdisciplinary movement and they
use multi-agent systems in different ways. Multi-agent
systems are now an umbrella term (Ferber, 1995,
1999) for (i) interacting hardware agents (collective
robotics), (ii) systems of interactive software agents
(softbots) used in distributing planning tasks, for
example, for Telecom scheduling applications (pro-
gram design), and (iii) simulations of multi-agents,
also called multi-agent simulations. In this paper we
will review and discuss on how multi-agent simula-
tions (this is what MAS will stand for in this paper)
concepts and techniques can be used in ecological
modeling practices.

Fruitful relations have already been established in
the past. References to ecology, in its broadest sense,
appear rapidly in the work on MAS. The anthill
metaphor provides a much-used illustration to rep-
resent the notions of reactive agents and emergence
and was the subject of the first applications (Drogoul,
1993). Hogeweg and Hesper’s work on bee colonies
(Hogeweg and Hesper, 1983), and Craig Reynolds’

“Boids” (Reynolds, 1987), which imitate the be-
havior of groups of migrating birds, even appear to
precede the notions of MAS or Artificial Life. They
were followed by a range of studies on animal be-
haviors and animal societies. MAS were also used
for so-called environmental applications that is, ap-
plications involving interactions between natural and
social dynamics such as water management (Lansing
and Kremer, 1994) or fisheries (Bousquet et al.,
1994). This paper is a review and discussion based on
papers devoted to ecosystem and resource manage-
ment, which may take into account these interactions
between society and natural systems.

We first present how the use of a bottom-up ap-
proach comes from and leads to paradigm shifts. Sec-
ond, we present MAS and their use in ecological and
social research. Then we propose a classification of
the kind of agent and interaction protocols used in the
literature and the various software tools. We end with
a discussion on the various uses of MAS.

2. MAS and ecosystem management: the
paradigm shifts

2.1. From “dynamics under constraints” to
Interactions

In the field of ecosystem management, the problems
of access and use of natural and renewable resources
are key issues. Scientists working in this area need to
examine the interactions between ecological dynam-
ics and social dynamics. Indeed, for many years, this
question was examined either exclusively from the an-
gle of “an ecological system subject to anthropogenic
disturbance” or, from the angle of “a social system
subject to natural constraints”.

In the first case, scientists make a careful descrip-
tion of the dynamics of the resource, with management
constituting a definition of the various forms of an-
thropogenic exploitation, which can be sustained over
the long term by this resource. Social dynamics are
summarized in terms of the type of resource exploita-
tion they entail.

In the second case, researchers generally concen-
trate on the problem of resource usage, placing them-
selves in the position of an isolated economic agent
who wishes to maximize the benefits obtained from
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a restricted resource and placing the collective use of
common resources within a framework of competi-
tive exploitation. Assuming the same decision-making
model for every agent (the optimizing rationality), ag-
gregation of behaviors is possible and the same model
can be applied from micro to macro levels.

For 10 years now, the challenge has been to develop
a new approach focusing more on the interactions be-
tween ecological and social components and taking
into account the heterogeneity of these components.

2.2. From a systemic to an organizational point of
view

In his paper on ecosystem complexity,Holling
(1987) defines three concepts that have dominated
causality in ecological systems and that define the
principles for the management of ecosystems. The
first one is based on the notion of equilibrium (balance
of nature), the second one defines several states of
stability (nature engineered or nature resilient). This
second perception is interested in dynamics caused
by variability, by events that occur at small scales.
The third point of view is the one of organizational
change (nature evolving). The system changes: exter-
nal events lead to perturbation of the system, but also,
especially when human beings are part of the system,
the actors of the system may, by themselves, change
the organization of the system. This third point of
view corresponds to the approach adopted by the
sciences of complexity: the general state of a set of in-
teracting entities may converge toward attractors, may
be disordered, or may exhibit patterns of organization
that change from one to another in an unpredictable
way (Wolfram, 1984; Langton, 1992). To study these
systems, the observations focus on the connectivity
of the ecosystem’s elements, their interactions, and
their organization across various scales.

2.3. Modeling tools: from stocks and flows to
behavior and interactions

To take into account the links between the natu-
ral system and the socioeconomic system, researchers
have integrated the two subsystems as modules of
models (Costanza et al., 1993). This systemic research
uses the tools and methods of the mathematicians
who developed that methodology: system dynamics

(Von Bertallanffy, 1968). Muller (1997)explains how
ecosystem theory got inspiration from systems an-
alytical sources and establishes the linkages among
ecosystem theory and cybernetics and control theory,
information theory, network theory, thermodynamics.
Practically, modelers describe systems as a set of mod-
ules or compartments interlinked by flows and con-
trols. User-friendly software such as Stella,1 Vensim,2

Simulink,3 and others is available. Practically, with
these tools, the compartments are used to represent the
stocks (aggregated variables) and flows represent flows
of matter, energy, or information. It is thus possible to
model linked ecological and economic components in
an integrated model. Each subsystem dynamic is con-
trolled by other subsystems. For instance, stocks of a
resource are controlled by the harvest, which in turn is
controlled by capital. Researchers, who have tried to
standardize the flows of both systems by means of en-
ergetic transformation, have proposed a stronger link
(Jorgensen et al., 2000). The theoretical assumptions
and the tools used by this approach led to studies of
the equilibrium properties of a system. ForUchmanski
and Grimm (1996), this systemic point of view repre-
sents ecological systems as stable states. System dy-
namics is a method for identifying the set of attractors
and the properties of the system near the attractors.

Although the systemic approach has been proposed
as an alternative to a reductionist approach, a new
point of view is emerging. The individual is the cen-
tral object of that ecology that focuses on problems
of behavior and interactions. This approach based
on the concept of the individual has developed its
own tools and methods. In ecology these models
are called individual-based models (IBM). But there
are two schools of thought and thus two uses of the
concept of the individual. According to researchers
and applications, these models fit in with the second
or the third approach presented by Holling. On the
one hand, for several researchers, the representation
of individuals introduces inter-individual variability
and thus heterogeneity is not aggregated (Lomnicki,
1999). Models are calledi-state distribution models
(Maley and Caswell, 1993). This does not challenge
the principles of a systemic point of view and its

1 http://www.hps-inc.com/#.
2 http://www.vensim.com/.
3 http://www.mathworks.com/products/simulink/.
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Table 1
Two systems of interpretation leading to two concepts of complexity (Villa, 1992)

Dynamic view Organizational view

System conceplualisation State variables Lower level process/entities
Suitable metaphores Cybernatic system Parallel computers
Specification of mechanism Centralized Distributed
Means of analysis Differential equations Computer simulations
Key behaviors Equilibrium, dynamic complexity Self-organization structural complexity
System organization Fixed, single level Variable, multilevel

major themes: equilibrium and control. On the other
hand, for other researchers, the introduction of the
individual in the organization corresponds to an al-
ternative to the systemic approach. Models are called
i-state configuration models(Maley and Caswell,
1993). The individual is given unique characteristics
(Judson, 1994) and holds a specific history (Gross,
1998). Furthermore, taking into account the social as-
pects, the individuals perceive the system and decide
to change the organization. While strengthening the
importance of the autonomy of the individual and the
organizational aspects, the researchers in ecology pre-
pared themselves for the interdisciplinary encounter
with computer scientists who were developing the
multi-agent system methodology (this is discussed in
Section 3.2). Villa (1992) refers to the use of new
computer tools and architecture to enhance the devel-
opment of this organizational point of view (Table 1)
as an alternative to the dynamic point of view.

Fig. 1. A multi-agent system (Ferber, 1999).

3. Multi-agent systems, ecology, social sciences,
and ecosystem management

3.1. A definition of multi-agent systems

There are various definitions of an agent (among
them, the one given by Wooldridge referred to in the
introduction of this paper) and multi-agent systems.
We present here the definition given byFerber (1995,
1999)because it seems to be the more meaningful for
researchers in ecology and environmental sciences.

A multi-agent (Fig. 1) system is composed of:

• An environment E, that is usually a space.
• A set of objects, O. These objects are situated, that

is to say, it is possible at a given moment to associate
any object with a position in E.

• An assembly of agents, A, which are specific objects
(a subset of O) and represent the active entities in
the system.
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• An assembly of relations, R, that link objects (and
therefore agents) to one another.

• An assembly of operations, Op, making it possible
for the agents of A to perceive, produce, transform,
and manipulate objects in O.

• Operators with the task of representing the applica-
tion of these operations and the reaction of the world
to this attempt at modification, which we shall call
the laws of the universe.

The key issue is formalizing the necessary coordi-
nation among agents. The questions are related to:

• Decision-making: What decision-making mech-
anisms are available to the agent? What are the
links among their perceptions, representations, and
actions?

• Control: What are the hierarchical relationships
among agents? How are they synchronized?

• Communication: What kinds of message do they
send each other? What syntax do these messages
obey?

Various elaborate formulas are put forward for all these
elements.

Multi-agent systems simplify problem-solving by
dividing the necessary knowledge into subunits, by as-
sociating an intelligent independent agent to each sub-
unit, and by coordinating the agents’ activity. Thus,
this refers to distributed artificial intelligence. This
theory can be applied to monitoring an industrial pro-
cess (Van Dyke Parunak et al., 1998), for example,
the coordination of several specialized monitors rather
than a single omniscient one. Fundamental research is
being conducted on the problems associated with the
representation of agents’ decisions and protocols for
communication. The main applications for multi-agent
systems are in telecommunications, the Internet and
physical agents, such as robots (Weiss, 1999). A group
of scientists specializes in the simulations of agents’
societies in ecology and social sciences.

3.2. MAS and IBM

In ecology, individual-based models (IBM) were de-
veloped at the end of the 1980s. The article written
by Huston et al. (1988)is the most frequently quoted.
These authors argue that there are two reasons for
developing this approach: first, the need to take into

account the individual because of his or her genetic
uniqueness and, second, the fact that each individual
is situated and his or her interactions are local.

These arguments were well received since a very
large number of publications now refer to this ap-
proach. Shortly after this publication,Hogeweg
and Hesper (1990)published a similar article on
“individual-oriented modeling”, which synthesized
research that started 10 years before and influ-
enced more particularly the community of Artifi-
cial Life researchers. In 1990, a conference titled
“Individual-based models and approaches in ecology”
was held in Knoxville, Tennessee, the proceedings of
which now constitute the fundamental literature on
this question (DeAngelis and Gross, 1992).

Wide-ranging studies have been carried out by re-
searchers in theoretical ecology. In 1994,Durett and
Levin (1994)published an article entitled “The impor-
tance of being discrete and spatial”. In this article, the
authors compare four approaches for modeling the dy-
namics of spatially distributed systems: (i) the average
field (ordinary differential equations) in which each
individual has an equal probability of interacting with
other individuals; (ii) “patch models” in which indi-
viduals are grouped on a set of sites with no connec-
tion structure; (iii) reaction–diffusion models where a
population of individuals diffuses in space; and (iv)
particulate approaches in which the individuals are
“discretized”. Durett and Levin (1994)demonstrate
the conditions in which these models are equivalent
or otherwise. Various other studies (McCauley et al.,
1993; Wilson et al., 1993; Wilson, 1996) have pur-
sued this approach, comparing results of mathematical
models and simulations centered on the individual.

During the 1990s, several individual-based models
were published. See the work ofRoese et al. (1991),
Silvert (1993), andDerry (1998). Several models are
models of forests (Deutschman et al., 1997). Numer-
ous ongoing applications can also be seen on the Web
site of C. Reynolds.4 Dedicated simulators (Carter,
1996; Risenhoover, 2002) also exist. The most strik-
ing application is doubtless the ATLSS model (across
trophic level system simulation), which seeks to sim-
ulate the ecological functioning of the Everglades re-
gion in Florida (Abott et al., 1995). This model repre-

4 http://www.red3d.com/cwr/ibm.html.
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sents abiotic factors such as hydrology, fire and hur-
ricanes, and the various trophic levels. Inside these
models, which may be multi-compartment mathemati-
cal models, different animal populations are simulated
(deer, felines) using IBM models. For models truly
distributed on the individual (i-configuration models),
the object approach has generally been applied.

A special issue ofEcological Modeling(Grimm,
1999; Grimm et al., 1999) presented a discussion on
what conclusions can be drawn after 10 years of de-
velopment and use of IBM. Mainly, two ideas are ex-
pressed on the need for a consolidation phase. The
biologists–computer scientists have to examine classi-
cal modelers’ questions: how to describe the structure
of a model and how to present the results? The con-
solidation is also theoretical. Too many applications
were presented without any concern about the generic
nature of the results.Grimm (1999)proposed favor-
ing models closer to theoretical issues, usually repre-
sented in mathematical terms.

There are some differences between MAS and IBM.
IBM were developed by ecologists who tried to in-
troduce the notion of the individual to understand the
role of heterogeneity. MAS are more influenced by
computer sciences and the social sciences. MAS give
more emphasis to the decision-making process of the
agents and to the social organization in which these in-
dividuals are embedded. Furthermore, an agent is not
necessarily an individual. An agent can represent any
level of organization (a herd, a cohort, a village, etc.).

3.3. MAS, artificial societies and computational
economics

MAS are developing rapidly in the field of social
sciences. Social simulation is the subject of numer-
ous conferences, for example, “multi-agent systems
and agent-based simulation” (MABS) (Sichman et al.,
1998) and “simulating societies” (Gilbert and Doran,
1994), among others. Research on the subject is pub-
lished in the electronic journalJASSS(Journal of Ar-
tificial Societies and Social Simulation) or in special-
ized journals. In addition, a group called agent-based
computational economics (ACE) (Tesfatsion, 1997)
has been set up, publishing on environmental issues
in various economic journals.

In social sciences, the use of MAS to simulate social
phenomena is generally associated with the method-

ological individualism in which the singular individ-
ual is considered as the elementary unit or the atom
of society (Weber, 1971). The overlap is, in fact, in
the bottom-up approach that characterizes MAS. How-
ever, the equivalence between individuals from a so-
ciety and agents from a MAS can be misleading: it is
possible for social groups, institutions, and even opin-
ions (Bura, 1994) to be considered as agents with their
own standards and rules for functioning. The agents
are directed by constraints or rules that are expressed
on a group level, that is, they are no more than entities
that act and are placed in a dynamic environment.

This straightforward comment—which is natural
when MAS are used for modeling—shows how the
simple duality that exists between individualism and
holism can be called into question. This is a major
preoccupation for researchers working on ecosystem
management and MAS:

(i) individuals, products of history are driven by col-
lective values and rules;

(ii) collective values and rules evolve because of the
interaction between individuals and groups;

(iii) the individuals are neither similar nor equal but
have their own specific roles and social status.

How do individuals make up a group? How is an in-
stitution created? The individual cannot be considered
as an autonomous entity that is independent of its so-
cial environment. How are individuals constrained by
collective structures that they themselves have set up
and how do they make these structures evolve (Gilbert,
1995)? What degrees of freedom are given to the def-
inition of individual practices? Here are just some of
the questions that can be explored using MAS and that
can be expressed as follows: “How are collective struc-
tures set up and how do they function when they are
based on agents with different capacities of represen-
tation, that exchange information, goods, or services,
etc., draw up contracts, and are thrust into a dynamic
environment that responds to their actions?”

3.4. MAS and ecosystem management

Parallel to the scientific dynamics presented above,
and despite limited interaction (only a few authors
publish in both communities) many developments
have been achieved by computer scientists invok-
ing a reference to ecology. Our review shows that,
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in most cases, the method used is that of simula-
tion. A few studies examine the question of problem
solving, called collective problem solving in the con-
text of MAS. On the basis of ethological studies
on the problem-solving capacities of social insects
(Deneubourg and Goss, 1989), numerous studies
have been performed involving processes that can be
transposed to the domain of computer programming
and robotics.Drogoul (1993)provides an excellent
review and develops with Ferber an original approach
called eco-resolution. This approach involves mod-
eling agents that must seek a state of satisfaction
by avoiding a state of displeasure. One of the most
well-known examples is that of the sliding squares
puzzle: by seeking to satisfy themselves individually,
the agents accomplish the collective task of defining a
particular spatial configuration. Born out of the collab-
oration between computer scientists and ethologists,
this method could be useful in dealing with problems
of ecosystem management: for example, the problems
of spatial organization of a landscape on the basis of
the different roles allocated to the interacting portions
of landscape. An initial example, concerning the spa-
tial organization of agricultural land, is found in the
work of Le Ber et al. (1999). Land use is represented
by groups of agents seeking to occupy plots to satisfy
production objectives. The performances of the sys-
tem are comparable to those of the simulated anneal-
ing algorithm. The work ofBaejs (1998)andFerrand
et al. (1997)can be placed in the same category.
In this context of land development, the interactive
agents are responsible for finding a spatial configura-
tion that optimizes a global criterion. One application,
for example, concerns the routing of a high-voltage
power line across a landscape filled with constraints.

Numerous publications claim a purely metaphorical
link with biology and ecology. For example, this arti-
cle does not cover the studies that apply to problems
of agents within electronic networks and that refer to
ecological processes. This is an emerging field and in-
terested readers may refer toMaes and Schneiderman
(1997)for further information.

Several authors have been using MAS in the field
of ecosystem management for several years. This kind
of application was begun by Lansing and Kremer who
studied water management in Bali (1994),Bousquet
et al. (1993)for fisheries management,Deadman and
Gimblett (1994)for park management, andKohler and

Carr (1996)for archeological issues. These authors
were followed by several researchers such asJanssen
and Carpenter (1999)for lake management andDean
et al. (2000)andBalmann (1997)for agricultural land
management.

If we view ecosystems in terms of people and man-
agement problems,Epstein and Axtell (1996)study
the structuring of networks and their effect on the
management and distribution of resources. In a more
applied context, we note the studies ofAntona et al.
(1998) on the organization of economic exchanges
between harvesters of renewable resources and con-
sumers. In this context, the use of economic manage-
ment tools is suggested, such as quotas, taxes, permits
(Kozlack et al., 1999) and their influence is tested ac-
cording to the level in the supply chain at which they
apply.

Barreteau and Bousquet (2000), Feuillette et al.
(2003) and Mathevet et al. (2003), among others,
propose models and simulations that involve relations
among one or more natural resources, agents who can
individually exploit the common land and act on the
common resource, and sets of interactions between
agents who coordinate their actions or exchange in-
formation. A good overview of work by the research
community from the United States is given in a book
published byKohler and Gumerman (2000). Janssen
(2003)also edited a book composed of several papers
on the topic of MAS for ecosystem management.

4. MAS: computer tools for ecosystem modeling

MAS relies on a bottom-up approach. Through the
modeling of agents’ behaviors and interactions, prop-
erties emerge that can be observed at the level of the
system. Although a model conceptualized in terms of
agents can be implemented with mathematical equa-
tions (Janssen and de Vries, 1998), it seems more nat-
ural to implement the agents with computer agents.
The field of computer science proposes various archi-
tectures for the agents’ decision-making and several
protocols of interaction.

4.1. Agents architectures

Although the notion of multi-agents involves inter-
action among many agents, the literature shows that
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most studies focus on the internal mechanisms of the
agent, either in terms of deliberation for intentional
agent, or in terms of adaptation for reactive agents.
Several types of architecture are proposed. Most are
architectures for reactive agents, although when hu-
man actions are considered in the ecosystem, archi-
tectures place more emphasis on deliberation. Produc-
tion rules are very often used to simulate the deduc-
tion process of an agent facing environmental stim-
uli. However, most frequently, production rules are
mixed with other kinds of formalizations such as pa-
rameterized functions, or are organized in a specific
internal architecture of the agent such as competitive
tasks or belief–desire–intention architectures. We start
here with agent architectures based on evolutionary
and connectionist principles.

4.1.1. Architectures based on the evolutionary
metaphor

Many applications of MAS to ecosystems have been
developed by the Artificial Life community. These re-
searchers, who seek to understand complexity through
a bottom-up approach, use a range of techniques, in-
cluding MAS. Seeking to understand life as it could
have been rather than as it is (Langton, 1988), they of-
ten use approaches based on the theory of evolution to
understand adaptation. The most well-known method
is that of genetic algorithms (Holland, 1975), which
make use of whatOppenheimer (1988)calls numeri-
cal genes. As part of his research on adaptive systems,
Holland (1975)has produced a class of algorithms
which code for the potential solution to a problem in
the form of a series of numbers or a chain of characters
(chromosomes). The algorithm attributes an adapta-
tion or “fitness” value to each chromosome. A periodic
selection process, a function of “fitness”, causes the
population to evolve by favoring the fittest individu-
als. Cross-breeding and mutations also occur. Numer-
ous applications have been proposed with evolution-
ary agents of this kind (Lindgren and Nordahl, 1994,
for example). Certain authors see each chromosome
as a situated agent rather than as a set of probabilis-
tic interactions. The coding of a chromosome within
the agent often involves associating different behav-
iors (movement, transport, communication, etc.) with
chromosome portions (genes) to obtain the “fittest”
behavior combinations. One of the first applications
of this approach, relating to foraging problems, was

presented byCollins and Jefferson (1992). Krebs and
Bossel (1996)focus on the emergence of objectives
for agents who are required to use an environment.
Nishimura and Takashi (1997)present an application
of these evolutionary approaches and demonstrate the
emergence of collective movement and congregation
behaviors. A handful of applications have been pro-
posed, showing how the control structure (the pro-
gram) of an agent looking for food evolves and adapts
over time. Holland suggested an agent architecture
based on this approach, which led to the creation of
the Echo platform (Hraber et al., 1997). These ideas
also led to the use of the concept of tag, again a kind
of numerical gene that codes the skills or the behavior:
agent interactions are driven through the comparison
of their tags. This is used to simulate the emerging so-
cial organizations of societies of agents (Epstein and
Axtell, 1996; Riolo et al., 2001).

4.1.2. Architectures for competitive tasks
Various architectures have been proposed to repre-

sent the choices made by an agent when it receives
several stimuli which activates different tasks. There
are many links in this area with robotics and with
the community working on animats (Guillot, 1999).
Taking the problem of finding food as a basis,Tyrell
(1993) proposes an architecture where behavior sys-
tems are activated in parallel. Taking the idea of in-
telligence without representation to its limits, certain
authors create agents whose decisions are based di-
rectly on stimulus perception (behaviorism). Examples
include a MANTA architecture proposed by Drogoul
and Ferber (1994), which attributes an activation level
to each competing task. This activation levelai of a
task i is calculated as follows:

ai(t) = wi(t)
∑n

j=1wj(t)
xi(t)

wherewi is the weight of the task andxi the stimu-
lus intensity. A task is selected ifai is greater than a
given threshold. To select the tasks, Brooks has pro-
posed a subsumption architecture (Brooks, 1991). The
activities are represented by different levels. Control
is based on mechanisms of inhibition and suppression.
The upper levels are capable of suppressing the in-
puts of the lower levels and inhibiting their outputs.
Though it is still referenced in theory and appears well
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adapted to ethological problems, this architecture has
few applications in ecology.

4.1.3. Architectures based on neural networks
Emphasis is placed on the learning capacity of

agents. The perception–action relation is modeled
by a network whose connections evolve.Collins and
Jefferson (1992)endow their ants with neural net-
works so that they are capable of learning. To deal
with the wide range of tasks to be accomplished, the
agent ant possesses several neural networks (one to
learn to explore, one to learn to transport). Jefferson
et al. also propose neural networks for their Genesys
agents (Jefferson et al., 1991). An application of
these methods is found in the thesis byDagorn et al.
(2000), who seeks to understand the movements of
tuna fish within their environment. In the Creature
model (Grand and Cliff, 1998), a commercially avail-
able computer game, the agent’s metabolism interacts
with a neural network to simulate the agent’s devel-
opment: it acquires a language. A handful of applica-
tions couple neural networks with genetic algorithms
that cause the network to evolve.

4.1.4. Parameterized functions
The agent’s decision may be expressed in terms of

additions of physical forces. For example, the work on
bird flight by Reynolds (1987)applies vector calcula-
tions in force fields resulting from the attraction or re-
pulsion of other agents. This type of modeling, where
agents represent elementary particles, is undergoing
major developments in a range of fields related to fluid
dynamics, be it for modeling of water flow (Perrier and
Cambier, 1997), crowd dynamics, urban traffic flow,
or mass animal movements (Mechoud et al., 1998;
Ramat et al., 1998; Lambert et al., 1999).

For certain resource management applications,
sometimes referred to as agro-ecosystems, the
decision-making processes of economically rational
agents are simulated. To decide what action to take,
these agents use models based on operational research
(gradient calculation, for example) or microeconomics
(such as the maximization of utility) to obtain an
optimal solution in the presence of constraints. This
is the case in the work ofWeisbuch et al. (1997)and
Balmann (1997), who simulate the optimization of a
farmer by means of linear programming. This process
of optimization can be more or less bounded and thus

the calculation of an optimum is often combined with
a set of production rules (Polhill et al., 2001; Becu
et al., 2003). Other applications (Deffuant, 2001) en-
dow their agents with decision-making methods based
on multi-criteria analysis. The agent may even be rep-
resented by a matter or energy flow model (Guerrin
et al., 1999). The application of these techniques of-
ten raises the question of how to link or choose an
individual rationality, for which numerous methods
are available, with collective decision-making.

4.1.5. BDI (belief–desire–intention) architectures
The cognitive agents involved in ecosystems

made an early appearance in the MAS community
(Bousquet et al., 1993; Doran and Palmer, 1993).
They were not based on neural network architectures
but on what have been defined and called afterward
belief–desire–intention architectures (Fig. 2). The
proposed architectures comprise objectives, represen-
tation, and involvement in individual or collective
actions. However, most applications for ecological
problems use simple agents and attention focuses
on understanding their coordination or their rela-
tions with the environment. There is nevertheless a
cognitive dimension that is primordial for all eco-
logical systems, i.e., spatial representation. A few
initial studies (Saarenma et al., 1988) looked at the
spatial representation of animals. The most widely
used method is the memorization of space and re-
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Fig. 2. Belief–desire–intention architecture (Woolridge, 1999).



322 F. Bousquet, C. Le Page / Ecological Modelling 176 (2004) 313–332

sources via a set of objects corresponding to a mental
map. The pioneering work ofFolse et al. (1989)is
an example of this. Another cognitive dimension is
used when modeling agent interactions is the notion
of reputation. Agents may have beliefs about other
agents, coming from their individual experience or as
a result of social reputation, that are used to guide
their level of commitment to collective resource man-
agement (Doran and Palmer, 1993; Rouchier et al.,
2001a; Mathevet et al., 2003).

4.2. Interactions: the role of environment

In the case of MAS applied to ecology, there are
three major types of interactions: interactions by com-
munication among agents, physical interactions (grow,
push, eat), and interactions mediated by the environ-
ment.

Direct interactions through the exchange of mes-
sages are relatively rare in ecological applications. A
few metaphorical applications are mentioned, such as
that of the prey–predator model studied by Bouron or
Baray (1998): predators communicate to surround a
prey. The most pertinent examples concern negotia-
tions and exchanges of contracts, goods, or services
among agents that represent humans forming part of
the ecosystem. For example,Franchesquin (1995)im-
plements the Sian protocol to simulate negotiations
among Bolivian farmers.

The physical interactions through which agents ex-
ert a physical action on others such as pushing, pulling
or exerting a pressure are not used for ecological ap-
plications, as far as we know. These kinds of inter-
actions have been used in physical applications such
as hydrology or physics of soil. On the contrary, a
physical interaction such as predation is often used in
models.

The third type (mediation by the environment) is a
response to whatKawata and Toquenaga (1994)de-
fine as one of the two key questions of Artificial Life,
namely, the relation between organisms and their envi-
ronment. The environment cannot simply be taken to
mean all other agents; the environment can be seen as
the physical space and the resources. This type of in-
teraction ties in with the concept of externality used by
economists. The results of an agent’s action transform
the common environment, with a retroactive effect
(positive or negative) on the other agents. In certain

studies, the dynamics of the environment and its het-
erogeneity are used as a medium for collective adapta-
tion. In this case, we speak of dynamic co-adaptation.
Many applications use the environment as a set of sig-
nals for movement, for reproduction, or for the choice
of tasks. The algorithms are often based on the concept
of “swarm intelligence”, which originated in the ethol-
ogy of social insects. The key idea is that “the structure
of the environment and the organization of the group
of agents are mutually co-determining” (Théraulaz,
1994). There are many applications of this approach
(swarm intelligence, co-evolution, world model, etc.)
(Bonabeau et al., 1999).

4.3. Tools

The applications presented are generally developed
with an object-oriented language. Some of them use
platforms. They can be divided into three types:

• Generic platforms are used for many purposes, such
as telecommunications and networks. Some of them
are regularly cited in environmental applications.
These tools are based on a principle that is not nec-
essarily resource management. Swarm (Minar et al.,
1996) is the favored tool of many researchers, es-
pecially in the U.S. StarLogo (NetLogo) is also one
often mentioned tool: it is much-more user friendly
but has less potential than Swarm. SDML features
a declarative modeling language and is useful for
focusing on the cognitive aspects of the agents.

• Platforms for social and ecological simulations
provide utility programs to simulate ecosystems
or resource management problems. These tools,
which include spatial representation, simulation
utilities for Monte-Carlo-type methods, and links
to other software (GIS, databases), are complete
tools for the implementation of different social or
ecological systems. Algorithms or structures are
provided to implement the link between agents
and their environment and elements are provided
to organize societies of agents (markets, auctions,
predation mechanisms, etc.). Ecosim (Lorek and
Sonnenschein, 1999) is more oriented towards ecol-
ogy, whereas Repast (based on Swarm) or Cormas
(Bousquet et al., 1998) are more open to the im-
plementation of social dynamics in interaction with
natural resource dynamics.
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• Dedicated platforms are tools concerned more with
specific applications. For example, Manta (Drogoul,
1994) focuses on problems of foraging or task al-
location in a society of insects. Arborscape (Savage
and Bell, 2000) models forest dynamics with em-
phasis on diversity. BacSim (Kreft et al., 1998) mod-
els microbiological dynamics. Mobydic models the
dynamics of fish populations (Ginot et al., 2002).
Users gain valuable insights into dimensionality, re-
lations of predation or competition, and standard
biological functions (mortality, growth, etc.).

5. Discussion on the use of MAS for ecosystem
management

5.1. Coupling spatial and social dimensions

As presented briefly inSection 3, the purpose of
MAS is to study the interactions between autonomous
agents and their organization. Is the organization con-
stitutive of the MAS or is it the result of the MAS? The
emergence debate is less simplistic today and is based
on a study of micro–macro circularity. Though orga-
nization is simultaneously a product, a context, and a
constraint for the agents, its characterization is never-
theless limited. Though agent structures and interac-
tions are categorized and described, organizations are
less clearly formalized. In MAS dedicated to ecosys-
tems, two elements of organization can be found: spa-
tial organization and networks.

The spatial dimension is the most frequently men-
tioned, with descriptions of the organization of agents
spread over space. Most problems associated with the
search for food involve the organization of agents and
their environment. Studies also focus on an important
question in ecology, that of regulation. In the context
of agents’ relations with their environment, the ques-
tion of the number of animals capable of surviving and
reproducing is often raised (Pepper and Smuts, 1999).
This directly affects the calculation of how many of
these animals can be harvested by the society and how
the environment should best be adapted to this require-
ment. In an integrative cybernetic vision, and taking
inspiration from demography, numerous studies have
been carried out on the theme of density dependence.
The concept of a maximum carrying capacity used to
be the cornerstone of ecosystem management. MAS

have been used to test organizational hypotheses other
than density dependence. For example,Le Page and
Cury (1997)test the theory of “obstinate nature”, ac-
cording to which agents tend to reproduce under en-
vironmental conditions equivalent to those in which
they were born. By combining the movement behavior
linked to this theory with the structuring of space, the
authors describe a population dynamic regulated with-
out density dependence. Several researchers are now
turning toward the characterization of spaces in which
agents move and coordinate their actions (Pepper and
Smuts, 1999). The landscape itself can be a MAS com-
prising different areas of space interacting on several
levels (Le Page et al., 1999). The spatial representa-
tion of the agents is also of importance (Dumont and
Hill, 2001). The organization of the agents’ space and
of the resources within it can also be the driving force
of a dynamic that leads to task allocation mechanisms.
Drogoul (1993)thus shows how agents (ants) are able
to specialize in different tasks to ensure that the anthill
functions successfully.

The second type of organization that can be stud-
ied with MAS is that of an interaction network struc-
ture. Many studies have been conducted in the field
of food webs and species diversity. The relations of
causality between the stability of an ecosystem and
its degree of connectivity have been tested in this way
(May, 1973). This question was theoretically treated
by Lindgren and Nordahl (1994). A similar question
has been raised, in a very applied manner, with regard
to fishing. Two experiments conducted at IRD (In-
stitute for Research and Development, France) were
seeking to determine the link among predation, com-
petition dynamics and ecosystem indicators. In the first
experiment, a food web comprising three fish species
whose behaviors are assumed to represent the diversity
of strategies encountered in the Niger River was sim-
ulated (Bousquet et al., 1994). The environment is a
river–floodplain system represented by several habitats
offering quantities of food that vary over time. The im-
plemented agents present behaviors that express differ-
ent adaptation mechanisms (adaptive strategies): dif-
ferent types of reproduction and movements in space
and time. One species eats the plankton brought in by
high waters. The second is heterotrophic: it consumes
plankton or small fish. The third is a pure predator.
The agents in this system are not models of individ-
uals but rather models of groups. Starting with this
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food web, increasing exploitation pressure (fishing in-
tensity) is simulated. It is thus possible to observe
the impact of this pressure on the food web, notably
the decline in species populations and the overall re-
sponse in terms of catches. This response takes the
form of a plateau in the population curve, illustrating
the ecosystem’s resistance to the stress of intensive
fishing. This type of plateau is well known in resource
ecology (Welcomme, 1989): indeed it reflects the re-
sponse pattern of all organisms subjected to a stress.
We thus move on from knowledge of species behav-
iors to the characteristics of the system’s dynamics.
A similar experiment was conducted byShin (2000).
Agents modeled on the basis of fish species database
information and positioned on a spatial grid interact
through predatory behavior. The result of these nu-
merous interactions is observed via a global indicator,
the size spectrum, widely used by managers to ana-
lyze the biological situation. In the case of these two
experiments, the aim was to establish a link between
data at different levels: behaviors and interactions at
the micro level and patterns observed at the ecosystem
level.

If we include the human dimension in the ecosys-
tem, social scientists model and simulate interaction
networks among agents to analyze the effects of differ-
ent rationalities and exchanges. For example,Rouchier
et al. (2001a)show how various hypotheses of rela-
tions between agents engaged in transhumance (mi-
gration) and sedentary agents in the Sahel produce
very different resource dynamics.

The most productive option is to combine the struc-
ture of a network and its position in space. Networks
of interaction between species take on more impor-
tance if they are structured in space. In one of the
original models,Hogeweg (1988)simulates agents
based on social insects. Through interactions between
TODO agents (behavior: do whatever activities come
along) and DODOM agents (behavior: establish rela-
tions of dominance), social groups are formed and a
rhythm is created. The influence of space structuring
on the creation of hierarchies is demonstrated. In the
same type of simulation,Doran and Palmer (1993)
study the social networks that are formed to capture
resources located in space. This work is based on a
classic BDI approach with recruitment of agents to
accomplish a task. Hierarchies appear and their func-
tionality is studied.Epstein and Axtell (1996)present

a set of simulations based on the theme of spatial
exchanges.

5.2. From theorization to collective decision making

MAS simulations are developed in the field of
ecosystem management for several purposes.

The first type of possible use of these simulations
complies with the principles of Artificial Life: inves-
tigating “life as it might be rather than life as it is”
(Langton, 1988). The modeler sets up mechanisms
and observes the emerging responses. These forms
may actually exist. This research is founded on the
results and approach adopted in physics (Weisbuch,
1991): it is the transitions between phases of a system
that are studied. The aim is thus to build very simple
interaction models and to find the critical coefficients
that characterize the transitions. One assumes that the
model and system under study belong to the same class
of universality whose qualitative properties have thus
been described. Although they do not explicitly refer
to physics, many publications use MAS for theoreti-
cal purposes (Doran and Palmer, 1993; Hales, 1997;
Pepper and Smuts, 1999; Rouchier et al., 2001b;
Thébaud and Locatelli, 2001).

Another more empirical use comes from the com-
munity of modelers working in life sciences and so-
cial sciences, who are either directly or indirectly in-
volved in resource management problems. The under-
lying idea, which is to produce a system that behaves
like reality, is always present, with the aim of using
the simulator to ask the question “and what if. . . ?”.
By adapting the model to reality the aim is not to make
the model into a prediction tool, but rather to under-
stand the dynamics that exist or have existed. The au-
thors examine behavior and identify parameters not to
provide an explanation but to simulate observations of
reality: the hypothesis tested can be used to simulate
these observations, but other hypotheses could also
simulate this reality. This method is used, for example,
in archaeology (Kohler et al., 2000) and history. One
example of an application is that ofDean et al. (2000)
who reconstitute the history of the Anasazi indians
and simulate scenarios that examine population move-
ments in response to environmental crises. Another
famous example is the work ofLansing and Kremer
(1994)on the coordination for water management in
Bali. MAS are also used to understand the traditional
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management of renewable resources (Bousquet et al.,
2001) and agricultural practices (Balmann, 1997).

The vocation of a model is generally to serve as a
decision support tool. The domain of the distributed
problem solving will likely be applied widely to pro-
pose solutions for configuring an area of space, for ex-
ample (Le Ber et al., 1999). But simulation can also be
used and can contribute to decision-making processes.
Take the work ofGimblett et al. (1998), for exam-
ple, who suggested that a natural park be redesigned
to prevent competing users (mountain bikes, walkers,
jeeps) from crossing each other’s paths by simulat-
ing the movement and field of vision of agents. Other
methods are proposed, such as companion modeling
(Bousquet et al., 1999). This method proposes to use
MAS to deal with problems of common property man-
agement as part of a constructivist approach with the
players of the system. The model becomes a shared
representation and can become, as the social process
moves forward, a tool for dynamic co-adaptation be-
tween one or more social groups and their environ-
ment. This circular approach of model presentation
and model construction with the players involved has
been proposed and tested in several different field sit-
uations. The role-playing method is used (Barreteau
et al., 2001). Role playing can be used to present a
MAS or to construct it with the players: bottom-up
modeling for bottom-up decision-making (Aquino (d’)
et al., 2002; Hare and Pahl-Wostl, 2002; Lynam et al.,
2002; Bousquet et al., 2003).

Likewise, applications in ecology offer many points
of interest for computer scientists. In the community of
Artificial Life, Bonabeau and Theraulaz (1994)men-
tions several, including algorithm design and theoriza-
tion.

• The metaphor for algorithm design. Relations
modeled for an application serve to conceptual-
ize algorithms, protocols, systems of visualization
(Hutzler, 2000), and even architectures. Genetic
algorithms and eco-resolution are initial examples,
though many others should emerge now that MAS
are raising questions of common resource sharing
and the ecologist and environmentalist vogue gives
the stamp of acceptability to all environmental
labels attached to new computational ideas.

• Theorization. The points raised with regard to IBM
are relevant here too: MAS can be created from

mathematical models with a view to making them
more complex, and it is possible to use MAS to
develop new theoretical constructions.Cazoulat
(1995), Keitt (1997), Weisbuch et al. (1997), Van
Dyke Parunak et al. (1998), among others, produced
initial studies comparing an MAS with mathemat-
ical models that already exist or have been created
for an application. In general, the mathematical
model is first created (the methods of statistical
physics are widely used) and its properties are stud-
ied. MAS then serve to introduce heterogeneity,
anisotropy and local histories. But MAS models are
also very powerful methods for directly developing
new theories, “more theory building than modeling”
(Doran and Palmer, 1993). They thus contribute to
efforts to theorize relations. This theorization does
not rule out comparison with field data. Alongside
the Artificial Life approach, the idea of the virtual
laboratory has emerged. It involves building a model
of the world and observing its dynamics via indi-
cators based on the same protocols as those used to
observe the real world. Classical validation methods
used in simulation (Hill, 1995) can even be used.
These comparisons with mathematical models and
with observed data can validate the architectures
and protocols proposed by computer scientists.

6. Some perspectives

MAS for ecosystem management is still a recent
research field. However, after the first set of applica-
tions and theoretical papers one can propose a set of
research questions to be examined in the future, as has
(Parker et al., 2003). These are themes for which the
interdisciplinary encounter between computer scien-
tists and social scientists and ecologists will be nec-
essary. Not surprisingly, we classify these questions
on the basis of individual decision-making, collective
decision-making, the problem of scales, the credibility
of the model, and the use of the model.

6.1. Individual decision-making

Interesting questions are emerging on the modeling
of the decision-making process of an agent.

First is the question regarding whether the research
should concentrate on the testing of theoretical mod-



326 F. Bousquet, C. Le Page / Ecological Modelling 176 (2004) 313–332

els or work on the elicitation of decision models from
the observation of the real world. On the one hand,
some researchers (Parker et al., 2003) suggest that re-
searchers be wary of accumulating too many specific
cases or too many applied models of decision. For
them, preference is to be given to models close to the-
ory and a challenge is to decide among the number of
these. The aim is to test which model is appropriate for
decision-making situations. On the other hand, some
other researchers (Aquino (d’) et al., 2002) are more
interested in the elicitation of local decision-making
models and, in an inductive way, they try to determine
which are the common elements of these models.

Second, there should be new interdisciplinary re-
search on the learning process. In most papers pre-
senting MAS for ecosystem management, the learning
process of the agents is poorly represented. As this is
one of the main research themes for computer scien-
tists working on agents, this should be improved in the
near future. For example, there is the question of the
spatial representation of agents: How does an agent
decide to leave a place where resources are scarce
and make a long journey to supposedly better zones?
This question is particularly relevant for herd model-
ing (Bah, 1997; Dumont and Hill, 2001). A lot of pa-
pers are proposed by computer scientists working in
the field of robotics and common work between the
communities should be fruitful.

6.2. Institutions for regulation

MAS are already used to study food webs, hier-
archies, commodity subsectors, economic regulation
tools, auctions, etc. The general institutional domain
offers a framework for studying the management of
common property and social regulation mechanisms
(Janssen and Ostrom, 2001). It should also provide in-
spiration for MAS: computer scientists should soon be
turning to the corpus of literature on the management
of common property. The institutional domain pro-
poses solutions other than economic (market-oriented)
solutions, as proposed byWellman (1996). If this hap-
pens, as it happened for electronic markets and virtual
markets, one can expect from the computer scientists
new architectures of agents and interaction protocols
built to facilitate the modeling of resource-sharing is-
sues. For example, a common problem is the one of
open systems: how can a society of agents, sharing a

common resource, adapt its organization to face the
problem of migration of agents?

6.3. Scale and organizational levels

One important reference in ecology is the theory of
hierarchy introduced byAllen and Starr (1982). Com-
plex systems are presented as intermediate between
large-number systems for which a statistical approach
is adapted and small-number systems for which math-
ematical approaches such as differential equations are
suitable. Intermediate systems are opaque unless they
are modeled as hierarchical organizations. The use of
hierarchies is a conceptual and practical tool to observe
the world and better understand it: scales are defined
by the observer of the system. In their book,Allen and
Hokstra (1992)explain that the understanding of a
complex system in ecology implies the understanding
of interactions not only at a given level but also among
various levels (organisms, populations, communities,
ecosystems, landscapes, biome, and biosphere). A
nested hierarchy is the simplest system, in which the
upper level contains the elements of the lower level.
By adopting the “layer cake” metaphor for ecosystem
scales presented byAllen and Hokstra (1992), anal-
ysis can be performed horizontally (across a level),
vertically (across scales) or diagonally (both the type
of system and the level are changed): “there is plenty
of room for entities from almost any type of ecologi-
cal system to be contained within an entity belonging
to any other class of systems”. The authors give the
example of rumination, which involves an ecosystem
under the control of an organism (the ruminant).

MAS is an interesting method for the questions
examined by the theory of hierarchy because it pro-
poses solutions for the modeling of agents interacting
at various levels. First, agents representing different
levels, and acting at different speeds, may interact in
a simulation. Several platforms (seeSection 4.3) pro-
pose different schedulers for the activation of agents,
and also propose tools to model groups of agents that
have their own behavior and may interact with other
groups or agents. Second, some MAS researchers are
interested in the dynamic creation of groups. Agents
may decide to form a group and give the control to
it. Alternatively, groups may cede the control of the
dynamics to the lower entities.Servat et al. (1998)
proposes an example for hydrology: at one level, wa-
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ter bowls have their own dynamics, and at the upper
level agents represent ponds or rivers. The use of
MAS based on the evolutionary metaphor can also
give very interesting results on the emergence and
dynamics of hierarchies (seeSection 4.1.1). Evolu-
tionary simulations are used to create artificial worlds,
which are used to define theoretical properties. Al-
though MAS present a promising potential to be used
for better understanding of hierarchies, we are not
aware of applications in ecosystem management.

6.4. The use of models: from positivism to
constructivism

The principles of MAS are principles of collective
decision-making of societies of agents that have dif-
ferent representations. Here, we argue that it is con-
sequently not possible to use this kind of model for
decision-making processes in a positivist stance.

Under the paradigm of natural sciences, the role of
researchers is to discover the truth and to unravel nat-
ural laws that drive the system (Castella et al., 1999).
Definitions of sustainability emphasize biophysical at-
tributes of ecosystems and often focus on calculable
thresholds below which land becomes unsustainable.
Hard sciences can show that an ecosystem is endan-
gered but the sustainable land use is defined as the
outcome of human interactions and agreement, learn-
ing, conflict resolution, and collective action (Roling,
1996). Soft systems (Checkland, 1981) are based on
the assumption that people construct their own real-
ities through learning in social processes. The role
of interdisciplinary teams including natural and social
scientists is to understand and strengthen the collec-
tive decision-making process through platforms of in-
teractions. The different stakeholders, including sci-
entists, should work out in an interactive fashion a
common vision on resource management that would
lead to new indicators, shared monitoring procedures,
information systems and concrete alternatives for ac-
tion. The scientist’s role is partly to feed this platform
with “objectively true” knowledge on the biophysical
subsystem, and the ways to compare, assess, and real-
ize the concrete alternatives are collectively decided.
Thus, adaptive management not only consists of the
objective of increasing the adaptiveness of the ecosys-
tem but also deals with the social process that leads
to this ecological state.

In other words, what are important are solutions
that emerge from interaction. And with them comes
a different portfolio of interventions, including medi-
ation to resolve conflicts, facilitation of learning, and
participatory approaches that involve people in nego-
tiating collective action. Computer-enhanced model-
ing becomes a tool for collective learning (Bousquet
et al., 1999), instead of tools for piloting the system.
Within that framework, a lot of work has to be done to
improve the methodologies and to establish methods
to assess the impact of such modeling exercises.

6.5. Credibility of the model

In the assessment of progress made by researchers
within the IBM community (Grimm, 1999), various
conclusions are drawn that can also be drawn for MAS.
The general idea is that, after several years of en-
riching innovation, a period of consolidation is neces-
sary. This consolidation must apply first to the method.
How should the results of a model be expressed? How
should its structure be presented? The stages of exper-
imental science must be reapplied. Within the MAS
community (Axtell, 2000) it is also widely recognized
that one weakness of MAS is the impossibility of es-
tablishing a mathematical proof of the obtained results.
However, the use of several techniques and methods
may enhance the credibility of MAS and this is the
subject of some research. We do not discuss here sen-
sitivity analysis, which is a classical step in simulation
methodology. Although approaches for the sensitivity
analysis of complex models are not very often used,
they are documented (Kleijnen, 1998) and we are not
aware of research specific for MAS.

The first strategy is to provide rigorous presenta-
tions of the structure of the model. For that purpose,
many authors document their model using graphic
language such as Unified Modeling Language. Re-
search is being done on a language more adapted to
agents called AUML (Agent UML). Others graphic
languages may be used, such as Petri Nets (Bakam
et al., 2001), from which it is possible to derive math-
ematical properties at the cost of severe simplifica-
tion of the model. The presentation of models using a
graphic language also allows the replication of models
as proposed byAxelrod (1997), which is made eas-
ier by the availability of platforms and their similarity
(for instance, Cormas, Ascape, Repast).
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The second strategy is to compare the results of the
MAS with other types of models, such as differential
equations. MAS can be simplified or parameterized in
order that they can be formulated with equations that
are explicitly solvable. The equivalence of the simu-
lated results with the analytical results enhances the
credibility of the model, although it does not validate
the results of MAS when the model is simulated in
more complex situations.

The classical procedure for validation is to compare
simulated data and observed data. This can also be
done in the field of MAS. As MAS models for ecosys-
tem management are often spatial models, particular
methods are being developed in interaction with the
field of landscape ecology. Several landscape indices
exist to evaluate the performance of simulation mod-
els (Turner et al., 1989) and many papers are being
published on the validation of land-use change models
(Vedkamp and Lambin, 2001).

Another strategy is to assess the relevance of the
hypotheses of the model. The assumptions of a MAS
model lie in the representation of the behavior of
agents and interactions. Some researchers propose
to test the accuracy of these assumptions through
experimental approaches (Deadman et al., 2000) or
role-playing games (Barreteau et al., 2001).

Validation can be perceived as the search for con-
sistency among different points of view. Authors use
a set of approaches and methods to enhance the cred-
ibility of the model. New methods are under develop-
ment and will be added to the available set; there is
also a need for the emergence of a consensus on pro-
tocols for the use of this set of methods.

7. Conclusions

In this paper, we have reviewed the field of MAS
and ecosystem management. We have presented a his-
torical perspective on the emergence of this field of
research through a set of interdisciplinary interactions.
Among the disciplines involved, computer science has
played a key role. We would like to use this conclusion
as a call for the strengthening of this interdisciplinary
encounter.

Since the mid-1980s, various research communities
have been working on distributed models and ecosys-
tems. Researchers in ecology and social sciences have

introduced the notion of the individual in their models
of dynamics to gain a clearer understanding of how
ecosystems work. Computer scientists have developed
ecosystem models both to find new conceptual mod-
els of behavior and interaction and to test the architec-
tures they have imagined. After several exciting years,
many applications are in progress. Nowadays, as the
number of researchers using MAS for simulation of
ecosystems has increased, it seems that there are fewer
interactions with computer scientists. MAS platforms
are available and several computer scientists do not
consider the applications as useful advances for their
discipline. However, there is still plenty of room for
interdisciplinary interactions. Researchers in ecology
and social sciences can use MAS to better model the
decision-making and learning processes and to study
more deeply and more effectively the different forms
of organization (spatial, network, hierarchical) and in-
teractions among different levels. Computer scientists
can exploit the concepts of natural and social sciences,
not only on the behavior of individuals but above all
on the systems of interaction between agents and their
environment (relations between organizations or insti-
tutions and properties of stability, resilience, hierar-
chies, etc.). These insights into regulation mechanisms
can favor progress in the computer science discipline.
Though each community can benefit from the other,
it is together that real progress will be achieved in
methodologies and in the use of these models as meth-
ods for observing artificial worlds, for experimenta-
tion, and for problem solving, and as tools aiding par-
ticipation in the decision-making process.
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