
M
R

L
D

a

A
A

K
A
H
C
R

1

a
u
c
d
w
s
f
c
c
e
t

m
C
e
p
d
w
a
2
R
e
p
t

0
d

Ecological Modelling 229 (2012) 25– 36

Contents lists available at ScienceDirect

Ecological  Modelling

jo ur n al homep ag e: www.elsev ier .com/ locate /eco lmodel

odeling  human  decisions  in  coupled  human  and  natural  systems:
eview  of  agent-based  models

i  An ∗

epartment of Geography, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4493, USA

 r  t  i  c  l  e  i  n  f  o

rticle history:
vailable online 3 September 2011

a  b  s  t  r  a  c  t

Coupled  human  and  natural  systems  (CHANS)  manifest  various  complexities  such  as  heterogeneity,  non-
eywords:
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linearity,  feedback,  and  emergence.  Humans  play  a critical  role  in  affecting  such  systems  and  in giving rise
to various  environmental  consequences,  which  may  in turn  affect  future  human  decisions  and  behavior.
In  light  of complexity  theory  and  its application  in  CHANS,  this  paper  reviews  various  decision  models
used  in  agent  based  simulations  of CHANS  dynamics,  discussing  their  strengths  and  weaknesses.  This
paper  concludes  by  advocating  development  of more  process-based  decision  models  as  well  as  protocols
or architectures  that  facilitate  better  modeling  of  human  decisions  in  various  CHANS.
eview

. Introduction

Human–nature systems used to be studied in separation, either
s human systems constrained by or with input from/output to nat-
ral systems (usually including the physical environment and the
orresponding ecosystem), or as natural systems subject to human
isturbance. This chasm between natural and social sciences, along
ith such unidirectional connections between natural and human

ystems, has hindered better understanding of complexity (e.g.,
eedback, nonlinearity and thresholds, heterogeneity, time lags) in
oupled human and natural systems (CHANS; Liu et al., 2007). This
ontext has given rise to many theoretical and empirical research
fforts in studying CHANS (see Sections 1.1 and 1.3), emphasizing
he aforementioned complexity features.

Synthetic analysis of such research efforts has revealed the
ulti-scalar and cross-disciplinary nature of much empirical

HANS related research (e.g., Bian, 1997; Phillips, 1999; Walsh
t al., 1999; Manson, 2008) as well as many similar complex
henomena shared by CHANS systems. For instance, researchers
ocumented the above complexity features at six sites around the
orld (Liu et al., 2007). Corroborating evidence for these features

lso comes from empirical work in the Amazon (Malanson et al.,
006a,b), the southern Yucatán (Manson, 2005), Wolong Nature
eserve of China (An et al., 2005, 2006), Northern Ecuador (Walsh
t al., 2008), and other places around the world. Indeed, such com-

lexity has been the subject of an emerging discipline: complexity
heory.
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1.1. Complexity theory

Partially originating from general systems theory (von
Bertalanffy, 1968; Warren et al., 1998), complexity theory
has been developed with input from fields such as physics, genetic
biology, and computer science. Recently receiving considerable
attention (Malanson, 1999; O’Sullivan, 2004), this line of research
focuses on understanding complex systems (or “complex adaptive
systems”). Complex systems usually encompass heterogeneous
subsystems or autonomous entities, which often feature nonlinear
relationships and multiple interactions (e.g., feedback, learning,
adaptation) among them (Arthur, 1999; Axelrod and Cohen, 1999;
Manson, 2001; Crawford et al., 2005).

Complexity can be manifested in many forms, including path-
dependence, criticality, self-organization, difficulty of prediction,
and emergence of qualities not analytically tractable from system
components and their attributes alone (Solé and Goodwin, 2000;
Manson, 2001; Bankes, 2002). Hence researchers have suggested
placing more emphasis on understanding and improving the sys-
tem of interest rather than fully controlling the system or seeking
the “orderly and predictable relationship between cause and effect”
(Solé and Goodwin, 2000). It is suggested that rather than being
treated as a cure-all solution, the complex systems approach be
employed as a systematic paradigm to harness (but not ignore
or eliminate) complexity and take innovative action to steer the
system in beneficial directions (Axelrod and Cohen, 1999).

Even with the above theoretical advancements and technical
development (ABM in particular; see below), complexity theory

is still considered to be in its infancy, lacking a clear conceptual
framework and unique techniques, as well as ontological and epis-
temological representations of complexity (Manson, 2001; Parker
et al., 2003; Grimm et al., 2005; Manson and O’Sullivan, 2006).

dx.doi.org/10.1016/j.ecolmodel.2011.07.010
http://www.sciencedirect.com/science/journal/03043800
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.2. Agent-based modeling

Like cellular automata (Batty et al., 1994,1997; Clarke and
aydos, 1998; Malanson et al., 2006a,b), agent-based modeling

ABM) has become a major bottom-up tool that has been exten-
ively employed to understand complexity in many theoretical
e.g., Epstein and Axtell, 1996; Axelrod and Cohen, 1999; Axtell
t al., 2002) and empirical (see Section 1.3) studies. What is an
gent-based model? In the terms of Farmer and Foley (2009), “An
gent-based model is a computerized simulation of a number of
ecision-makers (agents) and institutions, which interact through
rescribed rules.” By and large, such agents are embedded in and

nteracting with a dynamic environment, having the capacity to
earn and adapt in response to changes in other agents and the
nvironment. The ABM method has a fundamental philosophy
f methodological individualism, which advocates a focus on the
niqueness of individuals and interactions among them, and warns
hat aggregation of individuals may  give rise to misleading results
Gimblett, 2002; Bousquet and Le Page, 2004). Readers interested
n ABM are referred to Grimm (1999),  Gimblett (2002),  and Gilbert
2008).

Agent-based modeling has an intellectual origin from a com-
uter science paradigm called object-oriented programming,
hich has become popular since the 1980s with the advent of

ast computers and rapid advancement in computer science. This
aradigm “groups operations and data (or behavior and state) into
odular units called objects” (An et al., 2005), and lets the user

rganize objects into a structured network (Larkin and Wilson,
999). Each object carries its own attributes (data) and actions
methods) with a separation between interface and implemen-
ation (technical details). This separation hides technical details
parts of a clock) inside the system surface (interface of the clock;
ig. 1). The “implementation” feature makes the system work, while
he user-friendly interface running above the system details “pro-
ides simple data input, output, and display functions so that other
bjects (or users) can call or use them” (An et al., 2005).

The ABM approach has also benefited abundantly from many
ther disciplines, which are still fertilizing it. Among these dis-
iplines, research on artificial intelligence (AI) is noteworthy, in
hich multiple heterogeneous agents are coordinated to solve
lanning problems (Bousquet and Le Page, 2004). Also contribut-

ng to ABM development is artificial life research, which explores
life as it might be rather than life as it is” (Langton, 1988).
any social sciences are also nourishing ABM. For instance,

trategies adopted by rational agents are developed in cognitive
sychology and game theory; sociology is credited with defin-

ng modes of and modeling interactions between agents and

heir environments (Bousquet and Le Page, 2004). In studying
ocial behavior and interactions, ABM usually starts with a set of
ssumptions derived from the real world (deduction), and produces
imulation-based data that can be analyzed (induction). Hence

ig. 1. Object-oriented programming with separation between implementation and
urface.

ource:  reprint with approval from the publisher, see An et al. (2005).
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Axelrod (1997) considers ABM a “third way” in scientific research,
which complements the traditional inductive and deductive
approaches.

ABM has been used to predict or envision the phenomena of
interest (although some scholars may doubt ABM’s usefulness in
complex systems; e.g., Couclelis, 2001), to understand the system
under investigation, and to answer many “what if . . .”  questions
using the ABM as a “virtual landscape lab for conducting numerical
experiments” (Seppelt et al., 2009). ABM also facilitates theorizing
based on observations, e.g., comparing ABM outcomes to math-
ematical models. Despite these strengths, ABMs face limitations
such as lack of predictive power at local spatial scales, difficulty
in validation and verification (Lempert, 2002; Parker et al., 2003;
Matthews et al., 2007), and a shortage of effective architectures and
protocols (e.g., graphic languages, scale and hierarchy definitions)
to represent agents and their interactions (Bousquet and Le Page,
2004). Particularly, learning processes (as parts of or precursors to
decision making) of real world decision makers have been poorly
represented (Bousquet and Le Page, 2004).

1.3. Complexity research in CHANS

The application of complexity theory and its major tool ABM in
CHANS is still relatively recent, which can be largely summarized
in three threads. The first is the thread of individual-based model-
ing (IBM) in ecology. This line of research started in the 1970s and
advanced in the 1980s, characterized by relatively “pure” ecological
studies (thus not CHANS studies in a strict sense) that have con-
tributed to later CHANS-related ABM development. Exemplar work
includes research on the bee colony (Hogeweg and Hesper, 1983),
animats (agents that are located in space and may move or repro-
duce; Wilson, 1987; Ginot et al., 2002), “Boids” (Reynolds, 1987),
and Bachman’s sparrow (Pulliam et al., 1992). Even though IBM
and ABM are considered largely equivalent, some features differ-
entiate one from the other. While IBM focuses more on the role of
heterogeneity and uniqueness of individuals, ABM, with substan-
tial contribution from computer science and social sciences, gives
more attention to the decision-making process of agents and their
contextual social organizations (Bousquet and Le Page, 2004).

The second thread of ABM use in CHANS is characterized by con-
ceptual or theoretical tests in social science fields (e.g., “thought
experiments”). Work under this domain has become popular since
the 1970s, including the segregation models of Sakoda (1971) and
Schelling (1971),  the prisoners’ dilemma for testing cooperative
strategies (Axelrod and Dion, 1988), emergence from social life sim-
ulations (e.g., the SugarScape model; Epstein and Axtell, 1996), and
social generative research in complex adaptive systems (Epstein,
2006; Miller and Page, 2007). Such efforts, usually made in virtual
environments, feature ad hoc rules that are used to test ‘what if’ sce-
narios or explore emergent patterns. Efforts have also been invested
to answer archaeological questions using ABM, such as how or
why certain prehistoric/ancient people abandoned settlements or
adapted to changing environmental conditions (e.g., Axtell et al.,
2002; Kohler et al., 1996; Altaweel, 2008; Morrison and Addison,
2008). Such efforts, closely related to explorations in game theory
and complex adaptive systems (CAS), are precursors of modeling
empirical CHANS below.

The third and last thread features applying ABM to realistic
CHANS based on empirical data, which is usually coupled with
cellular models (e.g., cellular automata) to spatially represent the
environment. In tandem with the above theoretical advancements,
empirical support, especially data about human systems, is consid-

ered essential in advancing our understanding of complex systems
(Parker et al., 2003; Veldkamp and Verburg, 2004). Recent years
has witnessed considerable work devoted to the advancement
of complexity theory and application of ABM in CHANS (e.g.,
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books, or book chapters assembled in the past nine years are also
used to evaluate the completeness of the above online search.
L. An / Ecological Mo

enenson, 1999; Grimm,  1999; Kohler and Gumerman, 2000; Irwin
nd Geoghegan, 2001; Gimblett, 2002; Henrickson and McKelvey,
002; Deadman et al., 2004; Evans and Kelly, 2004; An et al.,
006; Crawford et al., 2005; Fernandez et al., 2005; Goodchild,
005; Grimm et al., 2005; Messina and Walsh, 2005; Sengupta
t al., 2005; Portugali, 2006; Uprichard and Byrne, 2006; Wilson,
006; Ligmann-Zielinska and Jankowski, 2007; Brown et al., 2008;
u et al., 2009). Also contributing to complexity theory is the
esearch on cellular automata and urban development (Benenson
nd Torrens, 2004; Batty, 2005, 2007). The rising attention to
omplexity theory is further evidenced by multiple complexity
heory sessions at the annual conferences of the Association of
merican Geographers (AAG) in recent years, the NSF-sponsored

nternational Network of Research on Coupled Human and Natural
ystems (CHANS-Net; established in 2008), and six CHANS related
ymposia held at the 2011 AAAS annual meeting in Washington,
C.

Several major advantages credited to ABM have made it power-
ul in modeling CHANS systems. First, ABM has a unique power to

odel individual decision making while incorporating heterogene-
ty and interaction/feedback (Gimblett, 2002). A range of behavior
heories or models, e.g., econometric models and bounded ratio-
ality theory (reviewed later in this article), can be used to model
uman decisions and subsequent actions. Second, ABM is able
o incorporate social/ecological processes, structure, norms, and
nstitutional factors (e.g., Hare and Deadman, 2004). Agents can be
reated to carry or implement these features, making it possible to
[put] people into place (local social and spatial context)” (Entwisle,
007). This complements current GIS functionality, which focuses
n representing form (i.e., “how the world looks”) rather than pro-
ess (i.e., “how it works”; Goodchild, 2004). This advantage makes
t technically smooth to couple human and natural systems in an
BM.

CHANS, largely similar to social–ecological systems (SESs) by
strom (2007),  may  have many human and nonhuman pro-
esses operating at multiple tiers that are hierarchically nested
Ostrom, 2009). Efforts devoted to understanding such processes
rom various disciplines have generated a large amount of findings.
owever, “without a common framework to organize findings, iso-

ated knowledge does not cumulate” (Ostrom, 2009), preventing
esearchers from effectively addressing the above complexity. ABM
s credited with having the flexibility to incorporate multi-scale and

ulti-disciplinary knowledge, to “co-ordinate a range of qualitative
nd quantitative approaches” (Bithell et al., 2008), and mobilize
he simulated world (An et al., 2005; Matthews et al., 2007). Con-
equently, agent-based modeling is believed to have the potential
o facilitate methodologically defensible comparisons across case
tudy sites. For example, ABM was used to synthesize several key
tudies of frontier land use change around the world (Rindfuss et al.,
007).

.4. Modeling human decision making in CHANS

In the process of truly coupling the human systems and natural
ystems within any CHANS, the importance of understanding how
uman decisions are made and then put into practice can never
e exaggerated (Gimblett, 2002). Human decisions and subsequent
ctions would change (at least affect) the structure and function
f many natural systems. Such structural and functional changes
ould in turn exert influence on human decisions and actions.
onetheless, seeking fundamental insights into human decision or
ehavior, though of paramount value, is beyond the scope of this

aper (even beyond the scope of one discipline). The goal of this
aper is to review how existing understanding of human decision-
aking and behavior has been used to model human decisions in

HANS. It is hoped that this review will benefit CHANS researchers
g 229 (2012) 25– 36 27

by shedding light upon the following perspectives (objectives of
this paper):

a) What methods, in what manner, have been used to model
human decision-making and behavior?

b) What are the potential strengths and caveats of these methods?
(c) What improvements can be made to better model human deci-

sions in CHANS?

Given the previously mentioned characteristics of complex sys-
tems, especially those in CHANS, as well as the power of ABM in
modeling and understanding human decisions, this paper limits
the review to how human decisions are modeled in recent CHANS
related ABM work.

2. Methods

To achieve the above goal and the specific objectives, a collec-
tion of articles was assembled through three steps. The first step
was a search on Web  of Science using the following combination of
Keywords: Topic = ((agent based modeling) or (multi-agent model-
ing) or (agent based simulation) or (multi-agent simulation)) AND
Topic = ((land use) or (land cover) or geography or habitat or geo-
graphical or ecology or ecological) AND Topic = ((human decision
making) or (environment or environmental)).

The first topic defines the tool of interest: only work using
agent-based modeling (as this is the focus of this paper). Given
that different authors use slightly different phrasing, this paper
incorporated the most-commonly used alternative terms such as
multi-agent simulation. The term “individual based modeling” was
not used as one of the key words because as a term predominantly
used by ecologists, it involves work largely in the “purely” ecologi-
cal domain and rarely contains research directly related to human
decisions in CHANS. The second topic restricts the search to be
within areas of land use and land cover change, geography, and
ecology.1 This decision is based on our interest in work in these
areas that characterize research related to CHANS systems.

The third topic reflects the major interest of this paper, which
relates to human decisions that give rise to environmental conse-
quences. We also include papers on all human-related agents, e.g.,
individual persons, households, or groups. This paper did not use
“AND” to connect the two  parts because this is too restrictive and
many relevant papers (including several renowned ones of which
the author is aware) are filtered out.

The second step, according to a suggestion from an anonymous
reviewer, was  a search on Web  of Science using the following
combination of Keywords: Topic = (agent AND (farmers OR farm-
ing) AND decision AND land). This search complements the above
search that was  relatively ineffective in finding several important
articles related to farmers’ land use decisions.

The third step is complementary to the first, which assembles
articles through the author’s personal archive that has been estab-
lished since 2002. This archive also includes relevant books or book
chapters that are not in the database on Web  of Science, but that the
author knows of (in regard to using ABM in CHANS). These papers,
1 Keywords like “anthropology” or “archaeology” are not used simply because
doing so greatly increases the number of papers found and most of them are not
relevant to the topic of this paper. Without using such keywords some papers have
still been found that are related to using ABM to study anthropologic phenomena
such prehistoric settlement (see Section 1.3).
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ig. 2. Dynamics of publications related to the ABM based on our search criteria
1994–2010).

. Results

In the above online search, 155 articles2 were found to be pub-
ished on the topics of interest from 1994 to 2010 from the first step.
ut of these 155 articles, 69 were beyond our planned scope (e.g.,

n pure ecology or cell biology), i.e., they do not fit the above criteria
expressed by the above keywords). The second step resulted in 26
rticles, 7 of which were chosen for review after removing those
onsidered to be irrelevant or redundant (i.e., already selected in
he above search). From the third step, 28 publications (i.e., papers,
ook chapters, or books) were found. Therefore a total number of
21 publications were included in this review, which comprises the
eference list.

Under these search criteria, it appears that ecologists and geog-
aphers take the lion’s share in CHANS related ABM work. The top
ix journals were Ecological Modeling (11 related papers), Environ-
ental Modeling & Software (11), Environment and Planning B (6),
eoforum (6), Journal of Environmental Management (6), and Agricul-

ure, Ecosystems & Environment (5). The publications in this domain
ave increased linearly from 1994 to 2010 (Fig. 2). This article did
ot include the counts in 2011 (2 at submission of this paper in
ebruary) because many are still incoming and thus unable to be
ncluded.

Before getting to the major findings, it is important to intro-
uce how data related to human decisions are collected as well
s how agents are characterized. Data collection for agent-based
odels, especially for modeling real CHANS, is usually very time-

onsuming and sometimes considered as a drawback of this
pproach (Gimblett, 2002). Various means, such as direct obser-
ations (e.g., Miller et al., 2010), surveys or interviews (e.g., Saqalli
t al., 2010), government archives (e.g., An et al., 2005), remote
ensing and GIS (e.g., Gimblett, 2002), and/or statistical census or
urveys were used to acquire data that facilitate modeling human
ecisions. When data are readily collected, agents in related CHANS
odels are usually assigned with real data collected at the same
evel (e.g., An et al., 2005) or data sampled from aggregate (statis-
ical) distributions or histograms (usually available from a higher
evel such as population; Miller et al., 2010). In modeling land use

2 If “individual based modeling” is added as part of the search key words, 308
apers are found. The vast majority of these added 153 papers have nothing to do
ith human decision making and are thus considered irrelevant.
g 229 (2012) 25– 36

decisions, data are often only available at the latter (aggregate) level
(Parker et al., 2008).

Overuse of aggregate distributional or histogram data may  risk
losing the strength of ABM because such data may  lead to average
“agents”. Heterogeneity of agents plays a critical role in deciding
how agents interact, feedback, react, and adapt (Matthews et al.,
2007). Also such overuse may  lead to hidden or implicit conflicts
between those characteristics assigned to agents, e.g., a newly
established household assigned to be located at a high elevation
(near the maximum in the survey data) may  be also “given” a large
amount of cropland, which, for example, is not very likely to hap-
pen in the panda reserve of An et al.’s (2005) model. To some
degree, attention to correlation among variables can avoid this
problem – with conditional probability distributions and regression
results allowing heterogeneity in agent characteristics while avoid-
ing conflicting sets of attribute values (Zvoleff and An, submitted
for publication).

Below a total of nine types of decision models (each type
as one subsection) are summarized and presented based on my
review of the set of articles in relation to modeling human deci-
sion in CHANS. These decision models include microeconomic
models, space theory based models, psychosocial and cognitive
models, institution-based models, experience- or preference-based
decision models (rules of thumb), participatory agent-based mod-
eling, empirical- or heuristic rules, evolutionary programming, and
assumption and/or calibration-based rules. A certain paper may use
multiple decision models, and this review does not intend to iden-
tify and recognize all of them. Instead, this article aims to extract
generic decision models that are typically used in CHANS related
ABMs. Also worthy of mention is that decision models and deci-
sion rules are used interchangeably in this article. Although actions,
behaviors, and decisions are not exactly equivalent (e.g., an action
may  come out as a result of a decision), these terms are used also
interchangeably in the context of the above goal and objectives
(Section 1.4).

3.1. Microeconomic models

Here the microeconomic models (or rules) refer to the ones that
are usually used for resource related decisions. Agents make deci-
sions to maximize certain profit, revenue, or rate of profit (e.g.,
Plummer et al., 1999) associated with various optional activities
such as transactions and renting while not violating any constraints
(e.g., Parker and Meretsky, 2004; Purnomo et al., 2005; Evans et al.,
2006; Fowler, 2007; Monticino et al., 2007; Schreinemachers et al.,
2007; Acevedo et al., 2008; Evans and Kelly, 2008; Li and Liu, 2008;
Millington et al., 2008; Filatova et al., 2009; Gibon et al., 2010; Miller
et al., 2010; Saqalli et al., 2010). In many instances, certain more
abstract utility functions (e.g., the Cobb–Douglas utility function;
see Chiang, 1984), which sometimes includes consumption, aspi-
ration (e.g., Simon, 1955; Gotts et al., 2003), or ecological indicators
(e.g., Nautiyal and Kaechele, 2009), are used in place of monetary
income. These functions often take an additive or exponential form
of a weighted linear combination of many criteria under considera-
tion (e.g., Jager et al., 2000; Brown et al., 2004; Brown and Robinson,
2006; Bennett and Tang, 2006; Liu et al., 2006; Zellner et al., 2008;
Chu et al., 2009; Le et al., 2008,2010). With such a utility definition
(exponential form), it is possible to calculate the probability of an
agent’s choosing one option (e.g., one site or one opportunity) as
the probability that the utility of that option is more than or equal to
that of any other option based on McFadden’s theorem (McFadden,
1974).
Whichever method is in use, the agents are often assumed to
make rational choices. It is believed that in the real world, such
choices or decisions are usually affected, constrained, or bounded
by imperfect resources (including knowledge and information) or
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imited ability to make use of such resources (Bell et al., 1988;
imon, 1997). This line of bounded rationality can also be seen
rom the literature of behavioral decision theory, which posits
hat agents should be limited in their environmental knowledge,
nd their decisions should be made relatively simply. Further-
ore, agents tend to seek satisfactory rather than optimal utility
hen making relevant decisions (Kulik and Baker, 2008). Microe-

onomic models, subject to these modifications or restrictions, are
mployed in numerous empirical studies. Examples include the
and use agents who choose sites for various land use purposes
Brown and Robinson, 2006; Brown et al., 2008; Reeves and Zellner,
010), the farmers who choose sites and routes to collect fuelwood
An et al., 2005), and land buyers in a coastal township who  search
or the location that maximizes their utility function constrained
y their budget (Filatova et al., 2011). Variants of microeconomic
odels include calculation of a preference function for a particular

and use at a location (Ligtenberg et al., 2010; Chu et al., 2009).
All these examples are characterized by one common feature:

omputing a certain utility (could also be named Potential Attrac-
iveness; Fontaine and Rounsevell, 2009) value for available options
nd then choosing the one with the best (maximum or minimum)
r satisfactory value. However, choices when using microeconomic
odels are made based on both science (guided by solid microe-

onomic theory) and art (based on the modeler’s perception of the
ystem under investigation). For instance, what variables, in what
orm (e.g., linear combination of the chosen variables), should enter
he utility function. CHANS modelers should be aware of, and cau-
ious about, these caveats when using microeconomic models.

.2. Space theory based models

Geographic theories treat distance differently. Absolute distance
etween locations is often considered when individuals make deci-
ions, giving rise to theories of absolute space. Christaller’s central
lace theory (Christaller, 1933) and von Thünen’s circles of pro-
uction (von Thünen, 1826) belong to this set of theories. When
ousehold agents evaluate candidate sites for their residential loca-
ion in the HI-LIFE model (Household Interactions through LIFE
ycle stages; Fontaine and Rounsevell, 2009), the Euclidean dis-
ances to the closest physical and social features (e.g., the main
oad network, train stations, key service areas, large cities) are
ncorporated in calculating each site’s Potential Attractiveness (PA).
istances to the-like physical and social features (e.g., peace and
rder situation) are also considered in the agent-based models of
oibl and Toetzer (2003),  Brown et al. (2004),  Huigen et al. (2006),
nd Li and Liu (2008).

The characteristics of a certain location in space (e.g., slope) as
ell as its location relative to other locations also affect the “attrac-

iveness” (Loibl and Toetzer, 2003) of a certain site, thus affecting
ndividual agents’ choice of location for a certain purpose. This
ccounts for the theories of relative space. For instance, the environ-
ental amenities (e.g., closeness or availability of coastlines, water

odies, and green areas such as national parks) belong to the rela-
ive space consideration (Brown et al., 2004, 2008; Yin and Muller,
007; Fontaine and Rounsevell, 2009). This relative space consid-
ration emphasizes the relative positioning (not absolute travel
istance or geographic coordinates) of a certain site in the corre-
ponding social and environmental context. Readers interested in
ssues on relative/absolute space are referred to the communication
iterature (e.g., Sack, 1980; Graham, 1998; Adams, 2010).

Under these two lines of theory, an agent “calculates” the suit-
bility of a given location for a certain purpose as a function

f variables that represent both absolute and relative locations
Manson, 2006). This calculation process may  involve indirect
ommunications with other agents mediated by the modified
nvironment (i.e., “stigmergy”; see Dorigo et al., 2000). This is
g 229 (2012) 25– 36 29

so because each location contains a repertoire of multi-layered
information, which buttresses the so called layered artificial intel-
ligence method (e.g., Banerjee et al., 2008). Such repertoire usually
consists of elements related to current or historical environmen-
tal and socioeconomic changes, including influences from other
agents’ actions. There is, however, certain degree of arbitrariness
in deciding what environmental/socioeconomic elements and what
(usually linear) relationships between the agent’s decision(s) and
the chosen elements should enter the model of interest. Also more
justification is needed for the arbitrary (usually equal) weights of
different distance or environmental amenity variables (e.g., Loibl
and Toetzer, 2003).

3.3. Psychosocial and cognitive models

Agents make decisions based on their own  cognitive maps
(e.g., concepts) or abilities (e.g., memory, learning, and innovation),
beliefs or intentions, aspirations, reputation of other agents, and
social norms (e.g., Simon, 1955,1960; Ligtenberg et al., 2004; Fox
et al., 2002). There are several models along this line that are worth
mentioning as they aim to “[represent] the net effect of people’s
thought processes” (Bithell et al., 2008).

First, the actor-centered structuration theory (ST) states that
actors influence, and simultaneously are influenced by, social struc-
tures, which reflects the concept of duality of structure (Giddens,
1984). This theory conceptualizes a recursive social reproduction,
which is in line with what is termed as circular causality or feed-
back in many complex adaptive systems such as CHANS (Janssen
and Ostrom, 2006; Feola and Binder, 2010). Another related the-
ory is the theory of interpersonal behavior (TIB), which posits
that intentions, habit, physiological arousal, and contextual fac-
tors exert impacts on agent decisions (Triandis, 1980). In one
example inspired by these two theories, a conceptual Integrative
Agent-Centered (IAC) Framework was  developed to integrate the
strengths of these two theories in explaining human behavior: the
ability of ST to incorporate feedback or micro-macro level interac-
tion as well as the ability of TIB to provide a structure of behavioral
drivers in empirical research. In predicting potato producers’ pes-
ticide use in Boyacá, the Colombian Andes, data regarding a set of
behavioral drivers (e.g., social norm, expected consequence of using
pesticide chosen according to TIB) were collected and exposed
to binomial and multinomial logistic regressions to estimate the
coefficients of these drivers and derive probability of using cer-
tain pesticides (Feola and Binder, 2010). If the following additional
steps had been done, the IAC framework would have been substan-
tially strengthened: build an ABM, characterize the agents using
the above survey and regression results, run the ABM, and let the
agents review the macro patterns as a result of their earlier micro-
level pesticide use decisions (feedback is thus incorporated), and
decide what to do in the future.

Second, fuzzy cognitive maps (FCM) are potentially very use-
ful in modeling human decisions and behavior in CHANS. The
FCMs, derived from cognitive maps that were originally introduced
by psychologists to model complex human or animal behaviors
(Tolman, 1948), are graphs that contain a set of nodes (concepts)
and a set of directional edges (each edge representing the influ-
ence of a concept on another). FCMs are mainly used to describe
and compute agent behavior in biological or ecological studies (e.g.,
predator–prey simulation, Gras et al., 2009). FCM related empirical
research devoted to simulating human–environment interaction in
CHANS has been minimal.

Third and last, computational organization theory is also poten-

tially useful in modeling human decisions in CHANS. With input
from social psychology, this theory claims that individual agents
learn about their environments along pre-conceived biases, and
influence other peer agents to adopt the same biases (Weick, 1979).
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hen et al. 2012 report that a 10% reduction in neighboring house-
olds who participate in a conservation program, regardless of
easons, would decrease the likelihood that the household would
articipate in the same program by an average of 3.5%. At the
aparo Forest Reserve in Venezuela, land occupation decisions are
trongly influenced by imitation and social learning among indi-
idual landowners as a way  to secure a “better way of life” (Terán
t al., 2007).

Along this line, more research should be devoted to the role
f social networks in affecting human decisions. The quality of
ocial networks (e.g., some members in the network have higher
nfluences on other members) may  determine how actions may
rise from interactions (e.g., Barreteau and Bousquet, 2000; Acosta-
ichlik and Espaldon, 2008; Christakis and Fowler, 2009). Research

n communication, marketing, and diffusion (e.g., adoption of
nnovations) could provide helpful conceptual frameworks or
uidelines for modeling human decisions in CHANS. For instance,
ecisions of agents in a certain system may  be explained by these
gents’ motivation, knowledge, and skills (Spitzberg, 2009); a small
inority of opinion leaders may  disproportionately affect or shift

he mass opinion on a certain topic (Katz and Lazarsfeld, 1955;
erton, 1968; Watts and Dodds, 2007). Also in understanding

ecreational decisions, cognitive assessment models (e.g., Kaplan’s
nformation Processing Model; Kaplan and Kaplan, 1982) are useful.
hey provide fundamental understanding of how humans evaluate
andscape quality and make subsequent decisions (Deadman and
imblett, 1994).

.4. Institution-based models

To a large extent, institution-based models are inextricably
inked to the above cognitive models because institutions can be
onsidered as a special type of social norm that is established
hrough law or policy. Institutions can explain why there are sim-
larities across agents. Institutional theory postulates that agents
n the same environment copy each other either because they are
orced to (government regulation) or to gain legitimacy from copy-
ng other same-environment members’ strategies (DiMaggio and
owell, 1983). For example, a person agent may  consider marriage
t a certain probability at the age of 22, the minimum age for mar-
iage legally mandated in China (An et al., 2005). In another CHANS,
he household agents could not perform their production activities
utside their own ejidos (land management and ownership units)
r sell land to outsiders before the neoliberal policy shift in the
outhern Yucatán (Manson, 2006).

Institutions may  take a number of forms. In modeling location
nd migration decisions of firms (agents), subsidies, tax reductions,
nd/or environmental standards (enforced by governments) play a
ritical role in impacting the mobility of small and medium size
rms (Maoh and Kanaroglou, 2007). The pastoralist enterprises in
ustralian rangelands, through conforming to policies from gov-
rnments and/or land brokers, may  adopt different strategies (e.g.,
elling, destocking, or restocking cattle; Gross et al., 2006). In the
imulation model of whale-watching tours in the St. Lawrence Estu-
ry in Quebec, Canada, boat agents are required by regulation to
hare whale location information among other agents (Anwar et al.,
007). Buyer and seller agents make land transactions, subject to

ocal policy and regulations (e.g., minimum parcel size), in the pro-
ess of seeking maximum economic returns (Lei et al., 2005).

.5. Experience- or preference-based decision models (rules of
humb)
Experience- or preference-based decision models are usually
ffective real-world strategies that can be articulated or induc-
ively derived from data (both quantitative and qualitative), direct
g 229 (2012) 25– 36

observations, ethnographic histories (e.g., “translating” narratives
or life histories from the field into a computerized model; Huigen,
2004; Huigen et al., 2006; Matthews, 2006), or “stylized facts
abstracted from real-world studies” (Albino et al., 2006). They
are often simple, straightforward, and self-evident without much
need for additional justification.

Examples using this type of decision model are many. When a
new house (agent) is set up, the vegetation in its location and sur-
rounding area is cleared up (Bithell and Brasington, 2009; An and
Liu, 2010). When clearing forests, the households in the southern
Yucatán will “clear secondary forest when the primary forest is too
far from my location” (Manson and Evans, 2007). Human agents
living with the hunter-gatherer lifestyle “first search for animals
in their present location (cell) to hunt, and if successful, consume
the animal. Otherwise, . . . [they] move to adjacent cells to hunt.”
(Wainwright, 2008). In deciding what to plant or simply fallow,
household agents check their subsistence needs, soil quality, capi-
tal, and labor in a hierarchically connected manner (Deadman et al.,
2004). In the Caparo tropical forest reserve in Venezuela, a settler
agent performs subsistence-oriented activities such as “slash and
burn” after he/she takes possession of a parcel of land in the reserve
(Moreno et al., 2007).

Along this line, artificial intelligence algorithms (e.g., learning
classifier; Holland and Holyoak, 1989), often combined with expert
knowledge and some degree of fuzzy logic, have been developed to
solicit agents’ decision rules in a manner consistent with our under-
standing of reality (e.g., Roberts et al., 2002; An et al., 2005; Wilson,
2007). Such rules or strategies are often dynamic and subject to evo-
lution (see Section 3.8 for one way  to capture such evolution). In
modeling prehistoric settlement systems (e.g., Kohler et al., 1996)
or human–environment interactions (e.g., Axtell et al., 2002), most
of the decision rules (if not all) are derived this way  unless there
are historically documented analogs.

3.6. Participatory agent-based modeling

A variant in the family of experience- or preference-based deci-
sion models (Section 3.5) is the so called participatory agent-based
modeling in which real people directly tell the modeler what
they would do under certain conditions (Purnomo et al., 2005;
Simon and Etienne, 2010). Put another way, participatory ABM
involves stakeholders in an iterative process of describing contexts
(e.g., local environment, the ABM), soliciting decisions, running
the ABM, and envisioning scenarios arising from the correspond-
ing decisions. One major rationale for participatory ABM is that in
modeling CHANS, it is often a challenge to communicate between
specialists (e.g., ABM modelers) and non-specialists. Stakeholders,
non-specialists in most situations, do not easily envision or under-
stand the (often) non-linear linkages between their decisions and
the environmental consequences within the system of interest.
The participatory ABM-generated scenarios can help stakehold-
ers make this linkage, quite often in a spatially explicit manner.
Agents are considered as individuals with autonomy and intelli-
gence, who keep learning from (thus updating their knowledge
base), and adapting to, the changing environment (e.g., “primitive
contextual elements”; Tang and Bennett, 2010) and other agents
(e.g., Bennett and Tang, 2006; Le et al., 2010). Participatory agent-
based modeling has arisen in this context, which is conceptually
similar to “companion modeling” in the ecology literature.

Participatory agent-based modeling incorporates on-site deci-
sion making from real people, facilitating “information sharing,
collective learning and exchange of perceptions on a given concrete

issue among researchers and other stakeholders” (Ruankaew et al.,
2010). A particular application is role playing of real stakehold-
ers, which has been successfully used in soliciting decision rules
through direct observation of the player’s behavior. Success of using
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his approach has been reported from several study regions such
s Northeast Thailand (Naivinit et al., 2010), the Colombian Ama-
onian region (Pak and Brieva, 2010), Central France (Etienne et al.,
003), Senegal (D’Aquino et al., 2003), and Vietnam (Castella et al.,
005a,b; Castella, 2009; see D’Aquino et al., 2002 for review).

.7. Empirical- or heuristic rules

Agents are assigned rules that are derived from empirical data
r observations (e.g., through cluster analysis; Bakker and Doorn,
009) without a strong theoretical basis or other guidelines. Models
sing rules of this type are sometimes called “heuristic rule-based
odels” (Gibon et al., 2010). Even though also based on data,

esearchers usually have to go through relatively complex data
ompiling, computation, and/or statistical analysis to obtain such
ules, not as straightforward and self-evident as that in Section 3.5.
ome demographic decisions are usually modeled in a stochastic
anner. For instance, male adults may  move to the Gulf of Guinea

asin to find jobs during the dry season at a certain probability
Saqalli et al., 2010); children between 16 and 20 may  go to college
r technical schools at a probability of 2% per year (An et al., 2005);
nly male adult agents more than 16 years old may  have access to
he migration activity (Saqalli et al., 2011). Using a series of pre-
etermined socioeconomic variables as covariates (the choice of
hese variables still depends on theory), Zvoleff and An (submitted
or publication) build statistical models (e.g., logistic regression and
urvival analysis) to make links between fertility choices and land
se.

Neural network or decision tree methods, largely black- or grey-
ox approaches (usually few mechanistic explanations or theories
re provided, if any), are sometimes used to derive or “learn” rules
rom empirical data. In modeling strategies of ambulance agents
hat aim to save victims, experts were provided with a set of sce-
arios that increase in information complexity (e.g., location and
umber of hospitals, ambulances, and victims, whether there is
nough gasoline). Then the set of criteria or decision rules, usually
ot elicitable or elicitable only with difficulty, was learned through
nalyzing the experts’ answers under the above scenarios using a
achine-learning process (e.g., a decision tree; Chu et al., 2009).

his type of black- or grey-box approach, though statistics-based,
s different from many other instances in which statistical analyses
e.g., regression) are used under theoretical (e.g., microeconomics
r others reviewed above) guidance.

When data on deterministic decision making processes are
navailable, it is sometimes practical to group agents according
o a certain typology (e.g., one derived from survey data). Such
ypologies usually account for differences in making decisions,
erforming some behavior, or encountering certain events (e.g.,
ntona et al., 1998; Etienne et al., 2003; Loibl and Toetzer, 2003;
athevet et al., 2003; Bakker and Doorn, 2009; Wainwright and
illington, 2010; Valbuena et al., 2010a).  In some instances, each

gent type may  be assigned a ranking or scoring value for a spe-
ific decision or behavior type (out of many types) according to,
.g., experts’ knowledge or empirical data (e.g., the ‘Who Counts’
atrix in Colfer et al., 1999).
Examples of this type of decision model are numerous. In one

xample focusing on land use decisions, five types of farmers
i.e., hobby, conventional, diversifier, expansionist-conventional
nd expansionist-diversifier) were identified based on both the
illingness and ability of farmers in terms of farm expansion and
iversification of farm practices. For each type, empirical proba-
ilities were found for optional activities such as “stop farming”

r “buying land” (Valbuena et al., 2010b). In modeling land use
ecisions at a traditional Mediterranean agricultural landscape,
illington et al. (2008) adopt a classification of “commercial” and

traditional” agents. These agents make decisions in different ways:
g 229 (2012) 25– 36 31

commercial agents make decisions that seek profitability in con-
sideration of market conditions, land-tenure fragmentation, and
transport; while traditional agents are part-time or traditional
farmers that manage their land because of its cultural, rather than
economic, value. Similar efforts include the agent profiling work
by Acosta-Michlik and Espaldon (2008) and the empirical typology
by Jepsen et al. (2005), Acevedo et al. (2008),  and Valbuena et al.
(2008).

Deriving rules this way (i.e., exposing empirical data to sta-
tistical analysis), modeling needs can be temporarily satisfied.
However, questions related to why decisions are so made are
largely left unanswered. For instance, Evans et al. (2006) point out
that many statistical tools can be employed to correlate particular
agent attributes (e.g., age) with specific land-use decisions, which
may  be “useful for policy purposes. However, this practice does not
necessarily identify why  landowners of a certain age make these
decisions.” Hence it would be ideal that beyond those empirical
or heuristic rules, actual motivations, incentives, and preferences
behind those decisions can be derived. This will not only provide ad
hoc solutions to the specific problem under investigation, but also
advance our generic knowledge and capacity of modeling human
decisions in complex systems (CHANS in particular).

3.8. Evolutionary programming

This type of decision making model, in essence, belongs to the
category of empirical or heuristic decision models (Section 3.7). It
is separately listed as its computational processes are similar to
those in natural selection theory. Agents carry a series of num-
bers, characters, or strategies (chromosomes; Holland, 1975) that
characterize them and make them liable to different decisions or
behaviors. The selection process favors individuals with the fittest
chromosomes, and these individuals usually have the capacity of
learning and adaptation. Copying, cross-breeding, and mutation
of their chromosomes are critical during the adaptation or evo-
lution process. Under this umbrella, genetic algorithms (Holland,
1975) have emerged and found applications in a range of ecologi-
cal/biological studies (see Bousquet and Le Page, 2004 for review)
as well as studies on emerging social organizations (Epstein and
Axtell, 1996). In CHANS research, few but increasing empirical stud-
ies fall into this category. Below are examples that illustrate this line
of modeling decision making.

In the human–environment integrated land assessment (HELIA)
model that simulates households’ land use decisions in the south-
ern Yucatán (Manson and Evans, 2007), household agents use
their intricate function f(x) to calculate the suitability when sit-
ing land use in a “highly dimensional stochastic” environment
(Manson, 2006). This function f(x) is considered to consist of usu-
ally multi-criteria (and likely multi-step) evaluation processes that
are unknown or inarticulate. Through some symbolic regression
(genetic programming in particular) between land change data (Y,
response variable) and spatial predictor variables (X = {X1, . . . Xn}),
an empirical function

�
f (x) can be estimated to approximate f(x)

(e.g., through minimizing the residuals between data and estimated
suitability). During the estimation process, multiple parental land
use strategies or programs (similar to the above chromosomes)
compete and evolve to produce offspring strategies through imi-
tating/sharing, interbreeding, and mutation (Manson, 2005).

Strategies computed through genetic programming are found
to be consistent with those obtained from general econometric
models or rules of thumb solicited from local interviews, and
the latter were often believed to be trustworthy (Manson and

Evans, 2007). This consistency increases the reliability of genetic
programming on the one hand; at the same time it necessitates
more explorations for why and when genetic programming should
be used in place of traditional modeling approaches. A variant
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nder this type of studies is the concept of tag (a sort of numerical
ode that explains skills or behavior). Agents, through comparing
nd adopting each other’s tags, interact with each other and are
ollectively (usually unwittingly) accountable for the emerging
atterns (Riolo et al., 2001).

.9. Assumption and/or calibration-based rules

Hypothetical rules can be used in places where inadequate data
r theory exists. In public health or epidemiology field, daily activity
outines and social networks (especially social contact structure)
re important for researchers to model the diffusion of infectious
iseases and to design polices for disease mitigation (Eubank et al.,
004; Epstein, 2009). Human agents are infected in a stochastic
anner that involves untested assumptions (e.g., Muller et al.,

004; Perez and Dragicevic, 2009), and the timing, location, and
robability of getting infected are closely related to the number of
ontacts they make with other agents over a certain time inter-
al (Stroud et al., 2007; Yang and Atkinson, 2008). Specifically in
erez and Dragicevic (2009)’s model, it is assumed that the length
f time for out-of-house daily activities for an individual is 10 h
time of high risk of being infected), which includes 2 h for pub-
ic transportation and 8 h in work places, study places, or places
or doing some leisure activities. People within this 10-h window
re assumed to have the same risk of infection, which may  be sub-
ect to changes if new observations or theories arise. Temporarily,
uch untested hypothetical rules are accepted to operationalize the
orresponding model.

Similarly, time-dependent human activities, varying across dif-
erent land use or agent types (e.g., rice growers, hunters) or time
indows, are documented and assumed constant over time. Such
ata, including the constancy assumption, are used to simulate how

ikely, e.g., humans may  be infected by Malaria over space and time
ssuming constant mosquito (An. hyrcanus) biting rate (Linard et al.,
009), or how likely hunters may  capture game animals (Bousquet
t al., 2001). In another instance, “[At] an age specified by the user
the user has to make these assumptions related to decision rules),
hildren leave the house in search of an independent livelihood or
ther economic opportunities” (Deadman et al., 2004). There are
any other simulation studies that similarly document the tim-

ng and location of different human activities, and assume a certain
ctivity, location, or time may  subject the associated agents to cer-
ain events (e.g., Roche et al., 2008; Liu et al., 2010) or strategies
e.g., Roberts et al., 2002) at the same probability.

Alternatively, calibration-based rules are used to choose among
andidate decision models. Specifically, such candidates are applied
o the associated ABM, which may  produce various outcomes. By
valuating the defensibility of the outcome or comparing the out-
ome with observed data (if available), the modeler decides what
ecision model is most likely to be useful. For instance, in Fontaine
nd Rounsevell (2009)’s model that simulates residential land use
ecisions, several values, usually ranging from low to high, are
hosen for a set of carefully selected parameters (e.g., weight for
istance to coastline or road network). Then all the combinations
f these parameter values are entered into the model for simula-
ion runs. Then the set of parameter values that give rise to resultant
ousehold patterns most similar (e.g., in terms of correlation coef-
cient) to real data at a certain aggregate level are retained. In some

nstances decision or behavior patterns of economic agents per se
re of interest, and this approach is used to detect the most plausible
ne(s) (e.g., Tillman et al., 1999).

There are several disadvantages associated with this type

f assumption and/or calibration-based decision models: (1)
esearchers usually do not have all the possible candidate rules,
hus the chosen one may  not be appropriate; (2) only a limited
umber of rules should be set by calibration testing; errors in ABMs
g 229 (2012) 25– 36

could cancel out each other and give rise to problematic calibration
outcomes (e.g., ruling out a good candidate). Therefore, rules of this
type should be used with caution. Calibration in ABM is often cited
as a weakness of ABM that needs to be improved (e.g., Parker et al.,
2003; Phan and Amblard, 2007).

4. Conclusion

This paper does not mean to give a complete list of all human
decision models used in CHANS research. It rather focuses on the
ones that are relatively frequently used in the hope that CHANS
modelers (especially beginners) may  find them helpful when grap-
pling with how to model human decisions. It is also noteworthy
to point out that the above nine types of models are by no means
exclusive – in many instances, hybrid models are employed in sim-
ulating CHANS decision making processes.

The CHANS related complexity (as reviewed in Section 1)
makes modeling of human decision highly challenging. Accord-
ing to this review, human decision or behavior models in related
ABMs range from highly empirically based ones (e.g., derived
through trend extrapolation, regression analysis, expert knowledge
based systems, etc.) to more mechanistic or processes-based ones
(e.g., econometric models, psychosocial models). It is clear that
both approaches for modeling human decisions along this gradi-
ent (from empirically based to processes-based) have their own
strengths and weaknesses, and should be employed to best suit
the corresponding contexts (e.g., objectives, budget and time lim-
itations) and complement each other. On the other hand, humans
make decisions in response to changing natural environments,
which will in turn change the context for future decisions. Humans,
with abilities and aspirations for learning, adapting, and mak-
ing changes, may  undergo evolution in their decision-making
paradigm. Given all these features, it is considered “something that
is still far away” to incorporate realistic reasoning about beliefs
and preferences into understanding and modeling human decision
processes (Ligtenberg et al., 2004). Without a more process-based
understanding of human decision-making (e.g., the way-finding
process model by Raubal, 2001), it is very difficult to appreciate
complexity at multiple dimensions or scales, achieving in-depth
coupling of the natural and human systems.

This research thus advocates that while keeping up with empir-
ically based decision models, substantial efforts be invested in
process-based decision-making mechanisms or models to bet-
ter understand CHANS systems. In many instances, process-based
models are the ones “capturing the triggers, options, and tem-
poral and spatial aspects of an actor’s reaction in a [relatively]
direct, transparent, and realistic way” (Barthel et al., 2008). Dur-
ing this pursuit, agent-based modeling will play an essential role,
and will become enriched by itself. On the other hand, CHANS mod-
elers should avoid an extreme situation in which decision models
are made unnecessarily complex through, e.g., including a large
amount of trivial details. Whatever decision models are used, the
KISS rule (“keep it simple, stupid”; Axelrod, 1997, pp. 4–5) may  still
be a good advice given the complexity we  face in many CHANS. By
keeping the behaviors available to agents limited and algorithmic,
we as modelers will be able to produce stories that, if not convinc-
ingly true, cannot be automatically “categorized as false because
they contradict what we  know of human capacities” (Lustick, 2000).

Modeling human decisions and their environmental conse-
quences in ABM is still a combination of science and art. One
difficulty encountered in this review is to compare and contrast dif-

ferent agent-based models, which may  partially arise from the high
variability in ways to develop and present agent-based models.
Consequently, cross-fertilization between ABM models developed
by different researchers is a daunting task. Similar to the ODD
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Overview, Design concepts, and Details) protocol for ecological
tudies (Grimm et al., 2006) and the agent-based simulation taxon-
my  for environmental management (Hare and Deadman, 2004),
t would be desirable to have similar protocols for CHANS-oriented
BMs that aim at modeling human decisions. This paper thus advo-
ates that generic protocols and/or architectures be developed in
he context of the specific domain of research questions. Advance-

ents in computational organization theory, behavioral decision
heory, marketing and diffusion research, and institutional the-
ry, may  provide useful insights for establishing such protocols
r architectures (Watts and Dodds, 2007; Kulik and Baker, 2008).
uch protocols or architectures, though not panaceas, may  be used
s benchmarks or checklists, offering recommendations on model
tructure, choice of decision models, and key elements in modeling
uman decisions.

As in the past, CHANS modelers will continue to benefit from
ther disciplines such as ecological psychology (directly address-
ng how people visually perceive their environment; Gibson, 1979),
iology/ecology (e.g., genetic programming), sociology (e.g., orga-
ization of agents), political science (e.g., modeling of artificial
ocieties), and complexity theory (e.g., complexity concept). It is
oped that research on how to model human decisions in CHANS
ill not only advance theories, but also bring forward new opportu-
ities in advancing complexity theory and agent-based modeling.
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