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Abstract

The dominant external forces influencing the rate of change of the Earth System have been
astronomical and geophysical during the planet’s 4.5-billion-year existence. In the last six decades,
anthropogenic forcings have driven exceptionally rapid rates of change in the Earth System. This
new regime can be represented by an ‘Anthropocene equation’, where other forcings tend to
zero, and the rate of change under human influence can be estimated. Reducing the risk of leaving
the glacial-interglacial limit cycle of the late Quaternary for an uncertain future will require, in the
first instance, the rate of change of the Earth System to become approximately zero.
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Human activities now rival the great forces of nature in driving changes to the Earth System
(Steffen et al., 2007). This has led to the proposal that Earth has entered a new geological epoch —
the Anthropocene (Crutzen, 2002; Crutzen and Stoermer, 2000). While substantial data have been
gathered in support of the Anthropocene proposal (Waters et al., 2016), what has been missing is a
high-order conceptual framework of the Earth System’s evolution within which the Anthropocene
can be compared with other changes in Earth history. We propose that in terms of the rate of change
of the Earth System, the current regime can be represented by an ‘Anthropocene equation’.

Earth is approximately 4.54 billion years old (Dalrymple, 2001). The Earth System is a single,
planetary-level complex system composed of the biosphere, defined here as the sum of all biota
living at any one time and their interactions, including interactions and feedbacks with the geo-
sphere defined here as the atmosphere, hydrosphere, cryosphere and upper part of the lithosphere
(Steffen et al, 2016). The age of Earth’s biosphere has been estimated at 3.7—4.1 billion years old
(Bell et al., 2015; Nutman et al., 2016). Astronomical and geophysical forces have been the domi-
nant external drivers of Earth System change during this period (McGregor et al., 2015; Petit et al.,
1999). Astronomical forces that affect insolation and relate to solar irradiance include orbital
eccentricity, obliquity and precession driven by gravitational effects of the sun and other planets
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(Milankovi¢, 1941), and impact events. Geophysical forces include volcanic activity, weathering
and tectonic movement.

Under the influence of these external forcings, the rate of change of the Earth System (E) at the
highest order of abstraction can be given by (after Schellnhuber, 1998, 1999, 2001):

dE
= _ 1
. f(A,G) (D

where 4 is astronomical forcing, G is geophysical forcing.

While astronomical and geophysical forcings have been dominant drivers pulling the Earth
System into new states (i.e. ‘basins of attraction’), internal dynamics, including biospheric evolu-
tionary processes, interacting with these drivers, can also drive major Earth System change, for
example, the Great Oxygenation Event 2.4 billion years BP that took place over hundreds of mil-
lions of years (Konhauser et al., 2009). Throughout Earth’s past, strong negative feedbacks arising
from the internal dynamics of the Earth System, often involving the biosphere, have assured long
periods — hundreds of millions of years at times — of relative stability (Lenton and Williams, 2013).
Internal dynamics are particularly important because of their influence on the atmospheric concen-
tration of greenhouse gases such as carbon dioxide, which in turn significantly influence the cli-
mate (Lenton, 2016).

Therefore, for completeness, an equation for the rate of change of the Earth System can be given as:

dE
_ 2
t 1(4,G.1) )

where [ is internal dynamics of the Earth System.

In the recent past, subdivisions of the Quaternary (2.588 Myr to present) have been defined by
climate forcing related to cyclical variation in Earth’s orbit coupled with other astronomical forc-
ings, changes in solar irradiance, and irregular events such as volcanic eruptions (Berger et al.,
2006). At present, the Earth System of the Quaternary is typified by saw-tooth oscillations of gla-
cial-interglacial cycling initially with 40,000-year periodicity until ~1.2 Myr BP, then switching to
100,000-year periodicity. Homo sapiens evolved during a rather unusual state of potential instability
in Earth’s history (Lenton and Williams, 2013). While astronomical forcing (4) has been the over-
riding external trigger of change in the Quaternary, relatively small astronomical forcings have
resulted in distinctly different states of the Earth System because of the strong influence of internal
dynamics (/), with bifurcation points influenced by small changes in atmospheric concentrations of
carbon dioxide (Berger et al., 2006; Ganopolski et al., 2016). Under current astronomical forcing
and atmospheric levels of carbon dioxide of about 280 ppm, Holocene-like conditions could have
been expected for probably another 50,000 years (Ganopolski et al., 2016).

However, an entirely new forcing is now driving change in the Earth System: human activity
(H). Although H is a subset of / (internal dynamics), here we argue that the magnitude, the unique
nature of the forcing in the history of the planet, and the rate have now become so profound that A
deserves to be considered in its own right in the context of Earth System dynamics. After
Schellnhuber (1999), we write:

dE

- 3
" f(4,G,1,H) (3)
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How significant is H as a driver of the rate of change of the Earth System? Steffen et al. (2004, 2011,
2015b) identified trends in socio-economic activities representative of H over the past 2.5 centuries and
found a broad correlation with Earth System changes, as measured by the rates of change of biodiversity,
atmospheric chemistry, marine biogeochemistry and land-use change amongst others. The authors noted
a very sharp increase in the rate of change of both H and £ since 1950 and a strong coupling between the
two, a phenomenon now known as the Great Acceleration (Hibbard et al., 2006; Steffen et al., 2007).

Examination of individual Earth System processes show the remarkable domination of A over
the other three factors in equation (3). For example, in one century, the Haber-Bosch process has
doubled the amount of reactive nitrogen in the Earth System relative to the pre-industrial baseline,
arguably the largest and most rapid impact on the nitrogen cycle for some ~2.5 Ga (Canfield et al.,
2010). The rate of change of ocean carbonate chemistry — ocean acidification — is potentially
unparalleled in at least the last ~300 Ma (Honisch et al., 2012). The rate of carbon emissions to the
atmosphere (~10 Pg/yr) are probably the highest they have been in ~66 Ma, since the start of the
Cenozoic (Cui et al., 2011; Zeebe et al., 2016) (Table 1).

For biodiversity, typical rates of background extinction are estimated to be around 0.1 extinctions/
million species years (De Vos et al., 2015). Current extinction rates are estimated to be tens to hundreds
of times higher than natural background rates of extinction (Barnosky et al., 2012; Ceballos et al., 2015).
Humans have now modified the structure and functioning of the biosphere to such an extent that the
Anthropocene may mark the beginning of a third stage in the evolution of Earth’s biosphere, following
the microbial stage from ~3.5 Ga BP and the metazoan from ~650 Ma (Williams et al., 2015).

In the last 7000 years, ice volumes on Earth stabilised and carbon dioxide (CO,) levels have
changed only slowly over that period. This provides a Holocene baseline for assessment of the
Anthropocene rate of change of the climate system (Waters et al., 2016). Atmospheric CO,, now
above 400 parts per million (ppm) is 120 ppm higher than the Holocene baseline, and has increased
~100 times as fast as the most rapid rise during the last glacial termination (Loulergue et al., 2008).
Atmospheric CH, concentration has risen rapidly to 1810 ppb in 2012, a level 2.5 times the level
in 1750 (722 ppb) (Saunois et al., 2016). The rate of change appears extraordinary compared with
natural changes and is more than double any observed value in the past 800,000 years (Loulergue
et al., 2008; Wolft, 2011).

From 9500 to 5500 years BP global average temperature plateaued, followed by a very slight
cooling trend (Marcott et al., 2013). Over the last 7000 years the rate of change of temperature was
approximately —0.01°C/century. Over the last hundred years, the rate of change is about 0.7°C/
century (Intergovernmental Panel on Climate Change (IPCC), 2013), 70 times the baseline — and
in the opposite direction. Over the past 45 years (i.e. since 1970, when human influence on the
climate has been most evident), the rate of the temperature rise is about 1.7°C/century (NOAA,
2016), 170 times the Holocene baseline rate.

We deduce, therefore, that astronomical and geophysical forcings in the Holocene, and perhaps
even through the entire Quaternary, approximate to zero compared with the impact of current human
pressures on the rate of change of the Earth System (Ganopolski et al., 2016; McGregor et al., 2015;
Steffen et al., 2004, 2015a; Waters et al., 2016; Williams et al., 2015). We also note from the rates of
change described above that / now is also significantly less than H. Therefore, following from
Schellnhuber (1999), but more directly based on Steffen et al. (2004, 2011, 2015b), the current rate
of change of the Earth System at the highest level of abstraction can be represented as:

dE
—==/(H) 4
dt A, G 1—-0

which might be termed the ‘Anthropocene equation’.
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Figure |. A systems approach to understand the linkages, interactions and feedbacks driving the Great
Acceleration and emergent behaviour affecting the rate of change of the Earth System (modified from
Hibbard et al., 2006: figure 18.2).

When did H come to dominate the astronomical and geophysical forcings and the internal
dynamics of the Earth System? Although there have been several proposed start dates for the
Anthropocene, including the Neolithic revolution (Ruddiman, 2013), the rise of European empires
and subsequent colonialisation (Lewis and Maslin, 2015), and the Industrial Revolution (Crutzen,
2002), none can match the mid-20th-century, global-level, synchronous step change in human
enterprise and the simultaneous human-driven change in many features of Earth System structure
and functioning. That is, anthropogenic impact crossed a critical threshold around 1950 with the
beginning of the Great Acceleration, when H moved from being a force of similar or smaller mag-
nitude to 4 and G, to usurping them entirely (Steffen, 2004, 2007, 2011; Waters, 2016).

An obvious, and critical, next step is to represent H as a sub-system of the Earth System because
it is now the prime forcing driving the rate of change of the Earth System. Although a full analysis
of H is beyond the scope of this paper (see McNeill and Engelke, 2016, for an analysis of the Great
Acceleration), we note one attempt at describing the system dynamics of H that is particularly
relevant here because it attempted to describe the dynamics of the Great Acceleration (Figure 1;
adapted after Hibbard et al., 2006).

Based on Figure 1, we can represent H as:

H =f(P,C,T) (5)

where P is population (more specifically the global ‘consumers’: the upper and middle classes as
defined by income on a national basis), C is consumption (and by definition production), and T is
the Technosphere (Haff, 2014), a concept particularly well-suited to Earth System analysis
(Zalasiewicz et al., 2014a). Note that equation (5) has similarities to the IPAT identity of Holdren
and Ehrlich (1974).

The Technosphere can be further broken down as follows:

T = f(En,K, Pe) (6)

where En is the energy system, K is knowledge and Pe is political economy, which relates to eco-
nomic systems bound by political decisions, now overwhelmingly dominated by globalisation (it
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GLACIAL

100,000 year cycle

dE/dt=F (A,G,])

Figure 2. Saw-tooth oscillations of Earth’s recent glacial-interglacial cycles represented as contour lines
around basins of attraction (each cycle is unique), and the trajectory of the Anthropocene. The trajectory
beyond 2016 indicates a significant departure from the glacial-interglacial limit cycle of the late Quaternary,
and a unique event in Earth’s history. A stable Anthropocene basin of attraction is speculative. Beyond it
lies a greenhouse attractor. It remains unclear whether anthropogenic forcing is significant enough to drive
the Earth System into a greenhouse state.

is worth noting that not all individuals or groups of people are equally responsible for the impacts
of H on dE/dt (Malm and Hornborg, 2015)), as shown in Figure 1. However the term H is charac-
terised in detail, the Anthropocene equation shows the domination of natural forcings by human
forcings, particularly since the mid-20th century (Hamilton and Grinevald, 2015).

Figure 2 shows a potential future trajectory of the Earth System in the Anthropocene, with the
system in 2016 poised at a critical position. Remaining within the interglacial conditions of the late
Quaternary will require the exceptionally rapid rate of change of the Earth System to return to close
to zero, with human forcings reduced to levels less than, or at least comparable to, astronomical
and geophysical forcings and the internal dynamics of the Earth System. Sustained human pres-
sures risk abrupt exiting of the glacial-interglacial limit cycle of the late Quaternary (Clark et al.,
2016; Ganopolski et al., 2016), and ushering in Earth’s sixth great extinction event (Barnosky
etal., 2012).

While the next few decades are crucial in setting the trajectory of H, and hence of the Earth
System, over the next tens of thousands of years (Clark et al., 2016; Ganopolski et al., 2016), in the
longer term the domination of H over 4, G and [ is very likely to be a transient condition, perhaps
similar to the Paleocene-Eocene Thermal Maximum (PETM) 56 million years ago (Honisch, et al.
2012). In that event, a massive release of carbon (between 3000 and 7000 PgC), possibly from
methane hydrates in the sea floor, drove a temperature spike of 4-8°C over a few thousand years
(Steffen et al., 2016; Zeebe et al., 2016). During the PETM, a sharp perturbation in G over a few
thousand years drove the instability in the Earth System, but it was short-lived with the system
returning to its long-term trajectory 100,000-200,000 years after the carbon release as 4, G and /
restored their long-term control of the system.

In the case of the Anthropocene, efforts to achieve the long-term viability of a global civilisation
— global sustainability — implies that Homo sapiens will deliberately and rapidly reduce its impacts
on the Earth System so that they are more comparable in magnitude and more synergistic with 4,
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G and particularly /. Alternatively, continued increases in H could well lead to abrupt changes in
the Earth System that could trigger societal collapse, forcibly reducing A dramatically and return-
ing control of the system to 4, G and /. The legacy of the impacts of H on / through changes in the
biosphere could, however, be discernible in the internal dynamics of the Earth System for millions
of years (Williams et al., 2015).
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