Adaptation to Sea Level Rise: Protecting the Coastal Zone Against, or Preparing it for, Inundation?
Adaptation to Sea Level Rise: Protecting the Coastal Zone Against, or Preparing it for, Inundation?

Hans-Peter Plag
October 19, 2015
Adaptation to Sea Level Rise: Protecting the Coastal Zone Against, or Preparing it for, Inundation?

1 or 2 meters of sea level rise in a century ...

Hans-Peter Plag
October 19, 2015
Adaptation to Sea Level Rise: Protecting the Coastal Zone Against, or Preparing it for, Inundation?

1 or 2 meters of sea level rise in a century ...
Adaptation to Sea Level Rise: Protecting the Coastal Zone Against, or Preparing it for, Inundation?

1 or 2 meters of sea level rise in a century ...
3, 4, 5, ... meters in a century ...

Hans-Peter Plag
October 19, 2015
Adaptation to Sea Level Rise: Protecting the Coastal Zone Against, or Preparing it for, Inundation?

1 or 2 meters of sea level rise in a century ... 3, 4, 5, ... meters in a century ...
Adaptation to Sea Level Rise: Protecting the Coastal Zone Against, or Preparing it for, Inundation?

Hans-Peter Plag
October 19, 2015
Adaptation to Sea Level Rise: Protecting the Coastal Zone Against, or Preparing it for, Inundation?

The Baseline: Past Climate and Sea Level Changes

Hans-Peter Plag
October 19, 2015
Adaptation to Sea Level Rise: Protecting the Coastal Zone Against, or Preparing it for, Inundation?

The Baseline: Past Climate and Sea Level Changes

The Syndrome: Recent Climate and Global Changes

Hans-Peter Plag
October 19, 2015
Adaptation to Sea Level Rise: Protecting the Coastal Zone Against, or Preparing it for, Inundation?

The Diagnosis: Leaving the “safe operating space”

The Baseline: Past Climate and Sea Level Changes
The Syndrome: Recent Climate and Global Changes
The Diagnosis: Leaving the “safe operating space”

Hans-Peter Plag
October 19, 2015
Adaptation to Sea Level Rise: Protecting the Coastal Zone Against, or Preparing it for, Inundation?

The Baseline: Past Climate and Sea Level Changes
The Syndrome: Recent Climate and Global Changes
The Diagnosis: Leaving the “safe operating space”
The Prognosis: Anticipating Surprises

Hans-Peter Plag
October 19, 2015
Adaptation to Sea Level Rise: Protecting the Coastal Zone Against, or Preparing it for, Inundation?

The Baseline: Past Climate and Sea Level Changes
The Syndrome: Recent Climate and Global Changes
The Diagnosis: Leaving the “safe operating space”
The Prognosis: Anticipating Surprises
The Therapy: “Lifestyle” changes

Hans-Peter Plag
October 19, 2015
The Baseline: Past Climate Variability
Climate Change is a long-term shift in the statistics of weather - averages, frequency and magnitude of extremes.
Climate Change is a long-term shift in the statistics of weather - averages, frequency and magnitude of extremes.

Climate is determined by:

- incoming radiation (sun)
- reflected radiation (albedo)
- retained heat (Greenhouse gases)
Climate Change is a long-term shift in the statistics of weather - averages, frequency and magnitude of extremes.

Climate is determined by:
- incoming radiation (sun)
- reflected radiation (albedo)
- retained heat (Greenhouse gases)

Climate can change from local to global scales.
Climate Change is a long-term shift in the statistics of weather - averages, frequency and magnitude of extremes.

Climate is determined by:
- incoming radiation (sun)
- reflected radiation (albedo)
- retained heat (Greenhouse gases)

Climate can change from local to global scales.

Climate can change a lot over time.
The Baseline: Past Climate Variability

INTERNATIONAL CHRONOSTRATIGRAPHIC CHART

Series/Epoch Stage /Age Numerical age (Ma) Environm. / Clim Eleutheria / Era Cyrenium / Period Numerical age (Ma)

Holoceane Upper Tihonian 152.4 ± 0.9 Neoproterozoic Cryogenian 568 ± 0.5
 Middle Kimeridgian 157.3 ± 1.0 Frasnian 367 ± 0.5
 Lower Pliensbachian 192.7 ± 0.7 Emian 458 ± 0.5
 Jurassic Lower Kimmeridgian 192.6 ± 0.5 Pragian 458 ± 0.5
 Middle Oxfordian 178.6 ± 0.5 Lovanium 486 ± 0.5
 Upper Kimmeridgian 157.3 ± 1.0 Trosselian 507 ± 0.5
 Carnian 193.9 ± 0.5 Pragian 507 ± 0.5
 Lower Ladinian 242 ± 0.5 Cisuralian 526 ± 0.5
 Upper Norian 257 ± 0.5 Tiahsian 546 ± 0.5
 Lower Callovian 247 ± 0.5 Tiahsian 546 ± 0.5
 Upper Oxfordian 252.1 ± 0.5 Maastrichtian 566 ± 0.5
 Lower Kimmeridgian 252.1 ± 0.5 Maastrichtian 566 ± 0.5

Cretaceous

Upper Cenomanian 80.5 ± 0.5 Maastrichtian 566 ± 0.5
 Turonian 80.5 ± 0.5 Maastrichtian 566 ± 0.5
 Santonian 80.5 ± 0.5 Maastrichtian 566 ± 0.5
 Campanian 80.5 ± 0.5 Maastrichtian 566 ± 0.5
 Maestrichtian 80.5 ± 0.5 Maastrichtian 566 ± 0.5

Cenozoic

Upper Miocene 15.9 ± 0.5 Pliocene 5.0 ± 0.5
 Pliocene 15.9 ± 0.5 Pliocene 5.0 ± 0.5
 Pleistocene 1.8 ± 0.5 Holocene 0.0 ± 0.5
 Holocene 1.8 ± 0.5 Holocene 0.0 ± 0.5

Unit of all eras and in the sequence of time defined by Global Boundary Stratigraphic Section and Points (GSSP) for their lower boundaries, including those of the Andean and Australian, long defined by Global Boundary Stratigraphic Ages (GCSA) (1996) and International Commission on Stratigraphy (ICS) for the upper boundary. Numerical ages are subject to revision and do not define units in the Phanerzoic and the Paleozoic for which the U.S. Geological Survey provided web or in the Paleozoic for which the ICS published 12520003.01.07.01.png.
The Baseline: Past Climate Variability

<table>
<thead>
<tr>
<th>System/Period</th>
<th>Series/Epoch</th>
<th>Stage/Age</th>
<th>Age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holocene</td>
<td></td>
<td></td>
<td>0.0117–0</td>
</tr>
<tr>
<td>Pleistocene</td>
<td></td>
<td></td>
<td>0.781–1.26</td>
</tr>
<tr>
<td>Calabrian</td>
<td></td>
<td></td>
<td>1.80–1.80</td>
</tr>
<tr>
<td>Gelasian</td>
<td></td>
<td></td>
<td>2.58–1.80</td>
</tr>
<tr>
<td>Neogene</td>
<td>Pliocene</td>
<td>Piscocian</td>
<td>Older</td>
</tr>
</tbody>
</table>

INTERNATIONAL CHRONOSTRATIGRAPHIC CHART

International Commission on Stratigraphy

v 2014/02

[Image of the International Chronostratigraphic Chart]
The Baseline: Past Climate Variability

<table>
<thead>
<tr>
<th>Subdivisions of the Quaternary System</th>
<th>System/Period</th>
<th>Series/Epoch</th>
<th>Stage/Age</th>
<th>Age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holocene</td>
<td></td>
<td></td>
<td></td>
<td>0.0117–0</td>
</tr>
<tr>
<td>Tarantian</td>
<td></td>
<td></td>
<td></td>
<td>0.126–0.0117</td>
</tr>
<tr>
<td>Ionian</td>
<td></td>
<td></td>
<td></td>
<td>0.781–0.126</td>
</tr>
<tr>
<td>Calabrian</td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
</tr>
<tr>
<td>Gelasian</td>
<td></td>
<td></td>
<td></td>
<td>2.58–1.80</td>
</tr>
</tbody>
</table>

Neogene
Pliocene
Pleistocene
older

INTERNATIONAL CHRONOSTRATIGRAPHIC CHART
www.stratigraphy.org
International Commission on Stratigraphy
v 2014/02
The Baseline: Past Climate Variability

Subdivisions of the Quaternary System

<table>
<thead>
<tr>
<th>System/Period</th>
<th>Series/Epoch</th>
<th>Stage/Age</th>
<th>Age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neogene</td>
<td>Pliocene</td>
<td>older</td>
<td></td>
</tr>
<tr>
<td>Pliocene</td>
<td>Pliocene</td>
<td>older</td>
<td></td>
</tr>
<tr>
<td>Pliocene</td>
<td>Miocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pliocene</td>
<td>Pliocene</td>
<td>older</td>
<td>0.333 – 2.59</td>
</tr>
<tr>
<td>Pliocene</td>
<td>Zanclean</td>
<td>5.333 – 3.59</td>
<td></td>
</tr>
<tr>
<td>Neogene</td>
<td>Miocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miocene</td>
<td>Messinian</td>
<td>7.245 – 5.333</td>
<td></td>
</tr>
<tr>
<td>Miocene</td>
<td>Tortonian</td>
<td>11.62 – 7.246</td>
<td></td>
</tr>
<tr>
<td>Miocene</td>
<td>Sangrevilian</td>
<td>13.82 – 11.62</td>
<td></td>
</tr>
<tr>
<td>Miocene</td>
<td>Langhian</td>
<td>15.97 – 13.82</td>
<td></td>
</tr>
<tr>
<td>Miocene</td>
<td>Burdigalian</td>
<td>20.44 – 15.97</td>
<td></td>
</tr>
<tr>
<td>Miocene</td>
<td>Aquitanian</td>
<td>23.03 – 20.44</td>
<td></td>
</tr>
<tr>
<td>Neogene</td>
<td>Oligocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligocene</td>
<td>Chattian</td>
<td>older</td>
<td></td>
</tr>
</tbody>
</table>

Pliocene

- **PlIOCEN***
 - **PlIOCEN***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 - **Pliocene***
 INTERNATIONAL CHRONOSTRATIGRAPHIC CHART
 INTERNATIONAL COMMISSION ON STRATIGRAPHY
 www.stratigraphy.org
 v 2014/02
 Chart drafted by J. C. Cohen & S. G. P. Fominykh; International Commission on Stratigraphy, 2014.
 Permission required for reproduction.
 **Chart © International Commission on Stratigraphy. (2014). **
 Chart © International Commission on Stratigraphy. (2014).
The Baseline: Past Climate Variability
The Baseline: Past Climate Variability

Rockstrom and Klum, 2015
The Baseline: Past Climate Variability

Rockström and Klum, 2015
The Baseline: Past Climate Variability

Marcott et al., 2013

Rockstrom and Klum, 2015
The Baseline: Past Climate Variability

(a) CO₂, CH₄ and Sea Level

(b) Climate Forcing

(c) Temperature Change
The Baseline: Past Climate Variability

The “Safe Operating Space”

Marcott et al., 2013

Marcott et al. reconstruction
Mann et al. reconstruction

Years (BP)

Temperature Anomaly (°C)

(AD 1961-1990)

CH₄ and Sea Level

Climate Forcing

Temperature Change
The Baseline: Past Climate Variability

The “Safe Operating Space”

Marcott et al., 2013

Marcott et al., 2013

Holocene
The Baseline: Past Climate Variability

Global and Local Sea Level Changes

![Graph showing global and local sea level changes over time. The graph plots sea level change in meters against thousands of years ago.]
20,000 years ago, sea level in Northern America and Scandinavia was up to 600 m higher than today, and in some other location 200 m lower.
20,000 years ago, sea level in Northern America and Scandinavia was up to 600 m higher than today, and in some other location 200 m lower.

Local Sea Level changes can be much larger than the global average changes.
20,000 years ago, sea level in Northern America and Scandinavia was up to 600 m higher than today, and in some other location 200 m lower.

Local Sea Level changes can be much larger than the global average changes.
20,000 years ago, sea level in Northern America and Scandinavia was up to 600 m higher than today, and in some other location 200 m lower.

Local Sea Level changes can be much larger than the global average changes.

During the last 7,000 years, global (and local) sea level was exceptionally stable.
20,000 years ago, sea level in Northern America and Scandinavia was up to 600 m higher than today, and in some other location 200 m lower.

Local Sea Level changes can be much larger than the global average changes.

During the last 7,000 years, global (and local) sea level was exceptionally stable.

Sea Level changes can be much larger than what we know from our history.
The Baseline: Past Climate Variability

(a) CO₂, CH₄ and Sea Level

(b) Climate Forcing

(c) Temperature Change
The Baseline: Past Climate Variability

Normal Range up to 1900
The Baseline: Past Climate Variability

Long-term (centuries to millennia) correlations:
• 130 ppm CO
• 130 ppm CO

Normal Range up to 1900
The Baseline: Past Climate Variability

Long-term (centuries to millennia) correlations:

- 130 ppm CO
- 130 ppm CO

Normal Range up to 1900

Holocene
The Baseline: Past Climate Variability

Long-term (centuries to millennia) correlations:

- 130 ppm CO
- 130 ppm CO

Normal Range up to 1900

Holocene
The Baseline: Past Climate Variability

Long-term (centuries to millennia) correlations:

- 130 ppm CO
- 130 ppm CO

Normal Range up to 1900

Holocene
The Baseline: Past Climate Variability
The Baseline: Past Climate Variability

Global Temperature Changes

Global Sea Level Changes

Marcott et al., 2013

---Holocene---

Temperature Anomaly (°C)

Years (BP)

Marcott et al. reconstruction

Mann et al. reconstruction

---Holocene---

Marcott et al., 2013
During the Holocene, climate, global temperature, and sea level were exceptionally stable; a perfect condition for the development of civilization.

Marcott et al., 2013

The Baseline for Civilization: During the Holocene, climate, global temperature, and sea level were exceptionally stable; a perfect condition for the development of civilization.
The Baseline: Past Climate Variability

Global Temperature Changes

Global Sea Level Changes

The Holocene was a “safe operating space for humanity”
The Baseline: Past Climate Variability

Global Temperature Changes

Global Sea Level Changes

The Holocene was a "safe operating space for humanity"
The Baseline: Past Climate Variability

Global Temperature Changes

The Holocene was a “safe operating space for humanity”

Global Sea Level Changes

Marcott et al., 2013
Key Points
Key Points

During the Holocene, climate and sea level were exceptionally stable

The Holocene was a “safe operating space for humanity”
The Syndrome: Recent Climate and Global Change
The Syndrome: Recent Climate and Global Change

Temperature 2008-2012 compared to 1900
Heat storage:

Where heat is stored

Scientists say much of the excess carbon dioxide given off by fossil-fuel burning is absorbed by the oceans, which also take up most of the excess heat energy that would otherwise be going into the atmosphere. As a result, the oceans are becoming warmer and more acidic, and sea levels are rising.
Heat storage:

Where heat is stored

Scientists say much of the excess carbon dioxide given off by fossil-fuel burning is absorbed by the oceans, which also take up most of the excess heat energy that would otherwise be going into the atmosphere. As a result, the oceans are becoming warmer and more acidic, and sea levels are rising.

Heat storage:

Where heat is stored

Scientists say much of the excess carbon dioxide given off by fossil-fuel burning is absorbed by the oceans, which also take up most of the excess heat energy that would otherwise be going into the atmosphere. As a result, the oceans are becoming warmer and more acidic, and sea levels are rising.
Heat storage:

- **Where heat is stored**

Scientists say much of the excess carbon dioxide given off by fossil-fuel burning is absorbed by the oceans, which also take up most of the excess heat energy that would otherwise be going into the atmosphere. As a result, the oceans are becoming warmer and more acidic, and sea levels are rising.

Heat storage:
The Syndrome: Recent Climate and Global Change

Heat storage:
The Syndrome: Recent Climate and Global Change
The Syndrome: Recent Climate and Global Change

(a) Observed globally averaged combined land and ocean surface temperature anomaly 1850–2012

- Annual average Temperature
- Decadal average

Year: 1850, 1900, 1950, 2000
The Syndrome: Recent Climate and Global Change

(a) Observed globally averaged combined land and ocean surface temperature anomaly 1850–2012

- Annual average Temperature
- Decadal average

(b) Northern Hemisphere spring snow cover

(c) Arctic summer sea ice extent

(d) Change in global average upper ocean heat content

(e) Global average sea level change

IPCC, 2013
The Syndrome: Recent Climate and Global Change

(a) Observed globally averaged combined land and ocean surface temperature anomaly 1850–2012

- Annual average Temperature
- Decadal average Temperature

(b) Sea Ice

(c) Change in global average upper ocean heat content

(d) Global average sea level change

(a) Northern Hemisphere spring snow cover

(b) Arctic summer sea ice extent

(c) Atmospheric CO₂

(d) Surface Ocean CO₂ and pH

IPCC, 2013
The Syndrome: Recent Climate and Global Change

(a) Observed globally averaged combined land and ocean surface temperature anomaly 1850–2012

- Annual average Temperature
- Decadal average

(b) Northern Hemisphere spring snow cover

(c) Arctic summer sea ice extent

(d) Change in global average upper ocean heat content

(e) Surface Ocean CO2 and pH

(f) Global sea level change

IPCC, 2013
The Syndrome: Recent Climate and Global Change
The Syndrome: Recent Climate and Global Change

Population | GDP | CO2 | CH4

1750 - 2000

Temperature | Floods

McDonald’s | Cars | Deforestation | Extinction

Figure 1. An enterprise to reckon with. Human manipulation of their environment began in earnest during the Industrial Revolution and accelerated markedly after the 1950s, as IGBP’s Great Acceleration graphs show. Modified after Steffen W et al. (2004).
The Syndrome: Recent Climate and Global Change

We are Reengineering the Planet ...

Population GDP CO2 CH4
1750 2000 Temperature Floods

McDonald’s Cars Deforestation Extinction

Figure 1. An enterprise to reckon with. Human manipulation of their environment began in earnest during the Industrial Revolution and accelerated markedly after the 1950s, as IGBP’s Great Acceleration graphs show. Modified after Steffen W et al. (2004).
The Syndrome: Recent Climate and Global Change
We are moving out of the Holocene and the “safe operating space for humanity” (Rockstroem et al., 2009):

- Climate Change (***)
- Ocean acidification (**)
- Stratospheric ozone depletion (*)
- Nitrogen (******) and Phosphorous cycles (**)
- Global freshwater (*)
- Change in land use (*)
- Biodiversity loss (*******)
- Atmospheric aerosols (?)
- Chemical pollution (?)

Figure 1 | Beyond the boundary. The inner green shading represents the proposed safe operating space for nine planetary systems. The red wedges represent an estimate of the current position for each variable. The boundaries in three systems (rate of biodiversity loss, climate change and human interference with the nitrogen cycle), have already been exceeded.
We are moving out of the Holocene and the “safe operating space for humanity” (Rockstrøm et al., 2009):

- Climate Change (***)
- Ocean acidification (**)
- Stratospheric ozone depletion (*)
- Nitrogen (***** and Phosphorous cycles (**)
- Global freshwater (*)
- Change in land use (*)
- Biodiversity loss (******)
- Atmospheric aerosols (?)
- Chemical pollution (?)

Climate change and sea level rise are symptoms, not the cause, the “sickness.”

Figure 1: Beyond the boundary. The inner green shading represents the proposed safe operating space for nine planetary systems. The red wedges represent an estimate of the current position for each variable. The boundaries in three systems (rate of biodiversity loss, climate change and human interference with the nitrogen cycle), have already been exceeded.
We are moving out of the Holocene and the “safe operating space for humanity” (Rockstrom et al., 2009):

- Climate Change (***)
- Ocean acidification (**)
- Stratospheric ozone depletion (*)
- Nitrogen (******) and Phosphorous cycles (**)
- Global freshwater (*)
- Change in land use (*)
- Biodiversity loss (******)
- Atmospheric aerosols (?)
- Chemical pollution (?)

Climate change and sea level rise are symptoms, not the cause, the “sickness.”
We are moving out of the Holocene and the “safe operating space for humanity” (Rockstrom et al., 2009):

- Climate Change (***)
- Ocean acidification (**)
- Stratospheric ozone depletion (*)
- Nitrogen (******) and Phosphorous cycles (**)
- Global freshwater (*)
- Change in land use (*)
- Biodiversity loss (******)
- Atmospheric aerosols (?)
- Chemical pollution (?)

Climate change and sea level rise are symptoms, not the cause, the “sickness.”
We are moving out of the Holocene and the “safe operating space for humanity” (Rockstrom et al., 2009):

Climate Change (***)
Ocean acidification (**)
Stratospheric ozone depletion (*)
Nitrogen (******) and Phosphorous cycles (**)
Global freshwater (*)
Change in land use (*)
Biodiversity loss (*******)
Atmospheric aerosols (?)
Chemical pollution (?)

Climate change and sea level rise are symptoms, not the cause, the “sickness.”
Key Points

During the Holocene, climate and sea level were exceptionally stable.
The Holocene was a “safe operating space for humanity”
Key Points

During the Holocene, climate and sea level were exceptionally stable.
The Holocene was a “safe operating space for humanity”

During the last hundred years, we have introduced rapid and large changes.
The Diagnosis: Leaving the “Safe Operating Space”
The Diagnosis: Leaving the “Safe Operating Space”

“Normal Range” (800,000 years)
The Diagnosis: Leaving the “Safe Operating Space”

“Current State”

“Normal Range” (800,000 years)
HUMANITY’S JOURNEY
The Evolution of Key Environmental Factors

10,000 YRS

AIR TEMPERATURE
0.01°C/century

CO₂
0.2 ppm/century

SEA LEVEL
0.05 m/century

POPULATION
16 M/century

ENERGY CONSUMPTION
0.01 TW/century

GINI COEFFICIENT
0.003/century

Stability
© Tiwah.co
Humanity's Journey
The Evolution of Key Environmental Factors

- Air Temperature: 0.01°C/century
- CO₂: 0.2 ppm/century
- Sea Level: 0.05 m/century
- Population: 16 M/century
- Energy Consumption: 0.01 TW/century
- Gini Coefficient: 0.003/century

© Tiwah.co
Humanity's Journey
The Evolution of Key Environmental Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>10,000 yrs</th>
<th>100 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Temperature °C/century</td>
<td>0.01</td>
<td>1.0</td>
</tr>
<tr>
<td>Carbon Dioxide ppm/century</td>
<td>0.2</td>
<td>120</td>
</tr>
<tr>
<td>Sea Level metres/century</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>Population million/century</td>
<td>16</td>
<td>5500</td>
</tr>
<tr>
<td>Energy Consumption TW/century</td>
<td>0.01</td>
<td>16</td>
</tr>
<tr>
<td>Gini Coefficient /century</td>
<td>0.003</td>
<td>0.3</td>
</tr>
</tbody>
</table>

ichen: 100X Faster
600X Faster
4X Faster
350X Faster
1600X Faster
100X Faster

© 2015 Tiwah
<table>
<thead>
<tr>
<th>Factor</th>
<th>10,000 BC</th>
<th>1,000 AD</th>
<th>2,000 AD</th>
<th>FUTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Temperature (°C/century)</td>
<td>0.01</td>
<td>1.0</td>
<td>100X Faster</td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide (ppm/century)</td>
<td>0.2</td>
<td>120</td>
<td>600X Faster</td>
<td></td>
</tr>
<tr>
<td>Sea Level (metres/century)</td>
<td>0.05</td>
<td>0.2</td>
<td>4X Faster</td>
<td></td>
</tr>
<tr>
<td>Population (million/century)</td>
<td>16</td>
<td>5500</td>
<td>350X Faster</td>
<td></td>
</tr>
<tr>
<td>Energy Consumption (Tera Watts/century)</td>
<td>0.01</td>
<td>16</td>
<td>1600X Faster</td>
<td></td>
</tr>
<tr>
<td>GINI COEFFICIENT /century</td>
<td>0.003</td>
<td>0.3</td>
<td>100X Faster</td>
<td></td>
</tr>
</tbody>
</table>

Holocene: Stability
<table>
<thead>
<tr>
<th>Factor</th>
<th>Holocene</th>
<th>20th and 21st Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Temperature °C/century</td>
<td>0.01</td>
<td>1.0</td>
</tr>
<tr>
<td>Carbon Dioxide ppm/century</td>
<td>0.2</td>
<td>120</td>
</tr>
<tr>
<td>Sea Level metres/century</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>Population million/century</td>
<td>16</td>
<td>5500</td>
</tr>
<tr>
<td>Energy Consumption TW/century</td>
<td>0.01</td>
<td>16</td>
</tr>
<tr>
<td>Gini Coefficient /century</td>
<td>0.003</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Humanity’s Journey: The Evolution of Key Environmental Factors

- **Holocene: Stability**
- **20th and 21st Century: Change, imbalance**

© 2015 Tivah
Key Points

During the Holocene, climate and sea level were exceptionally stable.
The Holocene was a “safe operating space for humanity.”

During the last hundred years, we have introduced rapid and large changes.
Key Points

During the Holocene, climate and sea level were exceptionally stable

The Holocene was a “safe operating space for humanity”

During the last hundred years, we have introduced rapid and large changes

The system is already now outside the “normal range” and in the dynamic transition to the Post-Holocene; we have increasing imbalances
The Prognosis: Anticipating Surprises
The Prognosis: Anticipating Surprises

Global average surface temperature change

(a)
The Prognosis: Anticipating Surprises

IPCC Assessment: Very Likely by 2100

Marcott et al., 2013
The Prognosis: Anticipating Surprises

IPCC Assessment: Very Likely by 2100

Marcott et al., 2013

---Holocene---

---Post-Holocene---

Marcott et al., 2013
The Prognosis: Anticipating Surprises
The Prognosis: Anticipating Surprises

Global mean sea level rise

Mean over 2081–2100

Year

(m)

IPCC, 2013
The Prognosis: Anticipating Surprises

Note: No accelerated contribution from Greenland and Antarctic ice sheets considered

Global mean sea level rise

Mean over 2081–2100

IPCC, 2013
The Prognosis: Anticipating Surprises

Note: No accelerated contribution from Greenland and Antarctic ice sheets

Modified from Church et al. (2010)

IPCC, 2013
The Prognosis: Anticipating Surprises

Global mean sea level rise

Note: No accelerated contribution from Greenland and Antarctic ice sheets

IPCC, 2013

Modified from Church et al. (2010)
The Prognosis: Anticipating Surprises
Example: Greenland and Antarctic Ice Sheets
Accepted knowledge in 2000:
Greenland: no significant contribution to sea level rise
Antarctica: minor contribution
Main contribution: steric changes
The Prognosis: Anticipating Surprises

Gravity Recovery and Climate Experiment (GRACE)
The Prognosis: Anticipating Surprises

Greenland and Antarctica

During the period of April 2002 to February 2009, the mass loss of the polar ice sheets was not constant but increased with time, implying that the ice sheets’ contribution to sea level rise was increasing.

Greenland:
- mass loss increased from 137 Gt/yr in 2002–2003 to 286 Gt/yr in 2007–2009
- acceleration of \(-30 \pm 11\) Gt/yr\(^2\) in 2002–2009.

Antarctica:
- mass loss increased from 104 Gt/yr in 2002–2006 to 246 Gt/yr in 2006–2009
- acceleration of \(-26 \pm 14\) Gt/yr\(^2\) in 2002–2009.
The Prognosis: Anticipating Surprises
The last 12 years of observing the ice sheets have revealed many surprises …
The Prognosis: Anticipating Surprises
National Research Council in 2013:
There is the potential for surprises and new extremes …
The Prognosis: Anticipating Surprises

National Research Council in 2013:
There is the potential for surprises and new extremes ...

Already happening: Disappearance of late-summer Arctic sea ice

Arctic ice extent melt, 1979 - 2014

Elliott, 2015
National Research Council in 2013:
There is the potential for surprises and new extremes …

Already happening: Disappearance of late-summer Arctic sea ice
National Research Council in 2013:
There is the potential for surprises and new extremes...

Already happening: Disappearance of late-summer Arctic sea ice

Already happening: Increases in extinction threats

Rossman & Marash (2014)
The Prognosis: Anticipating Surprises

National Research Council in 2013:
There is the potential for surprises and new extremes …

Already happening: Disappearance of late-summer Arctic sea ice
Already happening: Increases in extinction threats
The Prognosis: Anticipating Surprises

National Research Council in 2013:
There is the potential for surprises and new extremes …

Already happening: Disappearance of late-summer Arctic sea ice

Already happening: Increases in extinction threats

Disruption of Atlantic Meridional Overturning Circulation: unlikely in the 21st century; but gradual chance could have severe consequences
The Prognosis: Anticipating Surprises

National Research Council in 2013:
There is the potential for surprises and new extremes …

Already happening: Disappearance of late-summer Arctic sea ice
Already happening: Increases in extinction threats

Disruption of Atlantic Meridional Overturning Circulation: unlikely in the 21st century; but gradual chance could have severe consequences

Greenland ice sheet: abrupt changes very unlikely in the 21st century
The Prognosis: Anticipating Surprises

National Research Council in 2013:
There is the potential for surprises and new extremes …

Already happening: Disappearance of late-summer Arctic sea ice
Already happening: Increases in extinction threats

Disruption of Atlantic Meridional Overturning Circulation: unlikely in the 21st century; but gradual chance could have severe consequences

Greenland ice sheet: abrupt changes very unlikely in the 21st century

West Antarctic Ice Sheet: up to 4.8 m sea level rise; abrupt changes unlikely in the 21st century
The Prognosis: Anticipating Surprises

National Research Council in 2013:
There is the potential for surprises and new extremes …

Already happening: Disappearance of late-summer Arctic sea ice

Already happening: Increases in extinction threats

Disruption of Atlantic Meridional Overturning Circulation: unlikely in the 21st century; but gradual chance could have severe consequences

Greenland ice sheet: abrupt changes very unlikely in the 21st century

West Antarctic Ice Sheet: up to 4.8 m sea level rise; abrupt changes unlikely in the 21st century

Most likely (low-probability) rapid impact: ocean acidification
The Prognosis: Anticipating Surprises

National Research Council in 2013:
There is the potential for surprises and new extremes …

Already happening: Disappearance of late-summer Arctic sea ice
Already happening: Increases in extinction threats

Disruption of Atlantic Meridional Overturning Circulation: unlikely in the 21st century; but gradual chance could have severe consequences

Greenland ice sheet: abrupt changes very unlikely in the 21st century

West Antarctic Ice Sheet: up to 4.8 m sea level rise; abrupt changes unlikely in the 21st century

Most likely (low-probability) rapid impact: ocean acidification
<table>
<thead>
<tr>
<th>The Prognosis: Anticipating Surprises</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Research Council in 2013:</td>
</tr>
<tr>
<td>There is the potential for surprises and new extremes …</td>
</tr>
<tr>
<td>Already happening: Disappearance of late-summer Arctic sea ice</td>
</tr>
<tr>
<td>Already happening: Increases in extinction threats</td>
</tr>
<tr>
<td>Disruption of Atlantic Meridional Overturning Circulation: unlikely in the 21st century; but gradual chance could have severe consequences</td>
</tr>
<tr>
<td>Greenland ice sheet: abrupt changes very unlikely in the 21st century</td>
</tr>
<tr>
<td>West Antarctic Ice Sheet: up to 4.8 m sea level rise; abrupt changes unlikely in the 21st century</td>
</tr>
<tr>
<td>Most likely (low-probability) rapid impact: ocean acidification</td>
</tr>
</tbody>
</table>
The Prognosis: Anticipating Surprises

National Research Council in 2013:
There is the potential for surprises and new extremes …
May 12, 2014: A large section of the mighty West Antarctic ice sheet has begun falling apart ... That’s enough ice to raise global sea level by more than 15 ft. (4.6 m)

There is the potential for surprises and new extremes ...
The Prognosis: Anticipating Surprises

National Research Council in 2013:
There is the potential for surprises and new extremes ...

May 12, 2014: A large section of the mighty West Antarctic ice sheet has begun falling apart ... That’s enough ice to raise global sea level by more than 15 ft. (4.6 m)
May 12, 2014: A large section of the mighty West Antarctic ice sheet has begun falling apart ... That’s enough ice to raise global sea level by more than 15 ft. (4.6 m)

May 18, 2014: The glaciers of Greenland are likely to retreat faster and further inland than anticipated
The Prognosis: Anticipating Surprises

May 12, 2014: A large section of the mighty West Antarctic ice sheet has begun falling apart ... That's enough ice to raise global sea level by more than 15 ft. (4.6 m)

May 18, 2014: The glaciers of Greenland are likely to retreat faster and further inland than anticipated ...
The Prognosis: Anticipating Surprises

National Research Council in 2013: There is the potential for surprises and new extremes ...

May 12, 2014: A large section of the mighty West Antarctic ice sheet has begun falling apart ... That’s enough ice to raise global sea level by more than 15 ft. (4.6 m)

May 18, 2014: The glaciers of Greenland are likely to retreat faster and further inland than anticipated ...

May 28, 2014: During that time, the sea level on a global basis rose about 50 feet in just 350 years
The Prognosis: Anticipating Surprises

National Research Council in 2013:
There is the potential for surprises and new extremes...

May 12, 2014: A large section of the mighty West Antarctic ice sheet has begun falling apart... That's enough ice to raise global sea level by more than 15 ft. (4.6 m)

May 18, 2014: The glaciers of Greenland are likely to retreat faster and further inland than anticipated...

May 28, 2014: During that time, the sea level on a global basis rose about 50 feet in just 350 years

August 29, 2015: “The critical question thus becomes: Is Greenland likely to lose even more ice than it’s currently losing per year — and could Antarctica do the same?”

Why NASA’s so worried that Greenland’s melting could speed up
The Prognosis: Anticipating Surprises
The Prognosis: Anticipating Surprises

Accepted knowledge in 2000:
Greenland: no significant contribution to sea level rise
Antarctica: minor contribution
Main contribution: steric changes

Knowledge in 2015:
Greenland: is contributing, is accelerating, potentially a large contribution to sea level rise; increasing potential for a large contribution due to deep warm water around Greenland
Antarctica: West Antarctic ice sheet (WAIS) will contribute 4.5 m
Accepted knowledge in 2000:
Greenland: no significant contribution to sea level rise
Antarctica: minor contribution
Main contribution: steric changes

Knowledge in 2015:
Greenland: is contributing, is accelerating, potentially a large contribution to sea level rise; increasing potential for a large contribution due to deep warm water around Greenland
Antarctica: West Antarctic ice sheet (WAIS) will contribute 4.5 m
The Prognosis: Anticipating Surprises

Accepted knowledge in 2000:
- **Greenland**: no significant contribution to sea level rise
- **Antarctica**: minor contribution
 Main contribution: steric changes

Knowledge in 2015:
- **Greenland**: is contributing, is accelerating, potentially a large contribution to sea level rise;
 increasing potential for a large contribution due to deep warm water around Greenland
- **Antarctica**: West Antarctic ice sheet (WAIS) will contribute 4.5 m
The Prognosis: Anticipating Surprises

Accepted knowledge in 2000:
Greenland: no significant contribution to sea level rise
Antarctica: minor contribution
Main contribution: steric changes

Knowledge in 2015:
Greenland: is contributing, is accelerating, potentially a large contribution to sea level rise; increasing potential for a large contribution due to deep warm water around Greenland
Antarctica: West Antarctic ice sheet (WAIS) will contribute 4.5 m
The Prognosis: Anticipating Surprises

Accepted knowledge in 2000:
Greenland: no significant contribution to sea level rise
Antarctica: minor contribution
Main contribution: steric changes

Knowledge in 2015:
Greenland: is contributing, is accelerating, potentially a large contribution to sea level rise; increasing potential for a large contribution due to deep warm water around Greenland
Antarctica: West Antarctic ice sheet (WAIS) will contribute 4.5 m

800 Years?
100 Years?
How worried should we be?
The Prognosis: Anticipating Surprises
The Prognosis: Anticipating Surprises

Understanding thresholds
Understanding thresholds

The threshold is not where the boat goes over the edge, it is far up the river, when the people in the boat lose the option to get to the shore.
Understanding thresholds

The threshold is not where the boat goes over the edge, it is far up the river, when the people in the boat lose the option to get to the shore.

On a big, unknown river, don’t go into the middle, stay close to the shore.

Jim White
Understanding thresholds

The threshold is not where the boat goes over the edge, it is far up the river, when the people in the boat lose the option to get to the shore.

On a big, unknown river, don’t go into the middle, stay close to the shore.

Jim White

Many thresholds, including climate change related ones ...

Lenton & Schellnhuber (2007) *Nature Reports Climate Change*
Understanding thresholds
The threshold is not where the boat goes over the edge, it is far up the river, when the people in the boat lose the option to get to the shore.

On a big, unknown river, don’t go into the middle, stay close to the shore.

Jim White

Many thresholds, including climate change related ones ...
The warming of the Arctic could be a threshold we have crossed ...

Francis and Vavrus, 2015
The Prognosis: Anticipating Surprises

“Current State”

“Normal Range” (800,000 years)
The Prognosis: Anticipating Surprises

“Prognosis”

“Current State”

“Normal Range” (800,000 years)
The Prognosis: Anticipating Surprises
Our Commitment: The “~400 ppm CO₂ World”:
The Prognosis: Anticipating Surprises

Our Commitment: The “~400 ppm CO$_2$ World”:

Example: Mid-Pliocene, 3.3 to 3.0 Million Years ago
Temperature: ~1 - 2 °C higher
Sea level:
- global average on the order of 10 m higher than today
- regionally 5 to 40 m higher;
- most likely, much stronger storms due to larger temperature difference between tropics and polar regions
Example: Mid-Pliocene, 3.3 to 3.0 Million Years ago

- Temperature: \(~1 - 2\) °C higher
- Sea level:
 - global average on the order of 10 m higher;
 - regionally 5 to 40 m higher;
 - most likely, much stronger storms due to larger temperature difference between regions

Hansen et al., 2015: “… Evidence … that 2°C global warming is highly dangerous.”
Key Points

During the Holocene, climate and sea level were exceptionally stable

The Holocene was a “safe operating space for humanity”

During the last hundred years, we have introduced rapid and large changes

The system is already now outside the “normal range” and in the transition to the Post-Holocene
<table>
<thead>
<tr>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>During the Holocene, climate and sea level were exceptionally stable</td>
</tr>
<tr>
<td>The Holocene was a “safe operating space for humanity”</td>
</tr>
<tr>
<td>During the last hundred years, we have introduced rapid and large changes</td>
</tr>
<tr>
<td>The system is already now outside the “normal range” and in the transition to the Post-Holocene</td>
</tr>
<tr>
<td>Our knowledge is changing very fast and we may not know all thresholds</td>
</tr>
<tr>
<td>There is a potential for surprises and we should prepare for that</td>
</tr>
</tbody>
</table>
The Therapy: “Lifestyle Changes”
Decision Making Under Uncertainty (DMUU):

The Therapy: “Lifestyle Changes”
Decision Making Under Uncertainty (DMUU):

Planning for any limited range of plausible LSL trajectories inherently ignores part of the “probability density function” (PDF) of future LSL.
Decision Making Under Uncertainty (DMUU):

Planning for any limited range of plausible LSL trajectories inherently ignores part of the “probability density function” (PDF) of future LSL.

The Therapy: “Lifestyle Changes”
Planning for any limited range of plausible LSL trajectories inherently ignores part of the “probability density function” (PDF) of future LSL.

Decision Making Under Uncertainty (DMUU):

The Therapy: “Lifestyle Changes”
Decision Making Under Uncertainty (DMUU): Planning for any limited range of plausible LSL trajectories inherently ignores part of the “probability density function” (PDF) of future LSL.
Planning for any limited range of plausible LSL trajectories inherently ignores part of the “probability density function” (PDF) of future LSL.

Decision Making Under Uncertainty (DMUU):

The Therapy: “Lifestyle Changes”
Planning for any limited range of plausible LSL trajectories inherently ignores part of the “probability density function” (PDF) of future LSL.

Decision Making Under Uncertainty (DMUU):

The Therapy: “Lifestyle Changes”
Planning for any limited range of plausible LSL trajectories inherently ignores part of the “probability density function” (PDF) of future LSL.

How large is the risk associated with the part of the PDF not considered? **MOST LIKELY VERY LARGE, BUT WE DON’T HAVE A SOLID ASSESSMENT**

How likely is it that LSL might by far outside the limited range considered? **WE CANNOT EXCLUDE THIS TO HAPPEN IN THE “Post-Holocene”**

How likely would that turn into a low-probability, high-impact event? **MOST LIKELY, THIS WOULD BE A GLOBAL DISASTER**
Decision Making Under Uncertainty (DMUU):

Planning for any limited range of plausible LSL trajectories inherently ignores part of the “probability density function” (PDF) of future LSL. How large is the risk associated with the part of the PDF not considered?

MOST LIKELY VERY LARGE, BUT WE DON’T HAVE A SOLID ASSESSMENT

How likely is it that LSL might by far outside the limited range considered?

WE CANNOT EXCLUDE THIS TO HAPPEN IN THE “Post-Holocene”

How likely would that turn into a low-probability, high-impact event?

MOST LIKELY, THIS WOULD BE A GLOBAL DISASTER
The Therapy: “Lifestyle Changes”
The Therapy: “Lifestyle Changes”

Decision Making Under Foreseeability (DMUF): Having Foresight
Decision Making Under Foreseeability (DMUF): Having Foresight

Knowing the paradigms our decision making is based on ...
Decision Making Under Foreseeability (DMUF): Having Foresight

Knowing the paradigms our decision making is based on ...

Current paradigm (normalcy bias, based on 6,000 years):

“Sea level does not change very much, coastal zones change slowly, and the potential for surprises is low.”
Decision Making Under Foreseeability (DMUF): Having Foresight

Knowing the paradigms our decision making is based on ...

Current paradigm (normalcy bias, based on 6,000 years):
“Sea level does not change very much, coastal zones change slowly, and the potential for surprises is low.”

New paradigm:
“Sea level may change rapidly and coastal zones can migrate fast.”
Decision Making Under Foreseeability (DMUF): Having Foresight

Knowing the paradigms our decision making is based on ...

Current paradigm (normalcy bias, based on 6,000 years):
“Sea level does not change very much, coastal zones change slowly, and the potential for surprises is low.”

New paradigm:
“Sea level may change rapidly and coastal zones can migrate fast.”

Consequence:
- be prepared to move with the coastal zone
- keep the coastal zone clean and prepared for inundation
- have early warning systems in place
Decision Making Under Foreseeability (DMUF): Having Foresight

Knowing the paradigms our decision making is based on ...

Current paradigm (normalcy bias, based on 6,000 years):
“Sea level does not change very much, coastal zones change slowly, and the potential for surprises is low.”

New paradigm:
“Sea level may change rapidly and coastal zones can migrate fast.”

Consequence:
- be prepared to move with the coastal zone
- keep the coastal zone clean and prepared for inundation
- have early warning systems in place

Necessary:
- develop concepts, governance, infrastructure, and built environment that allows us to benefit from working and living in the coastal zone under changing sea levels and moving coast lines.
The Therapy: “Lifestyle” Changes
The Therapy: “Lifestyle” Changes

<table>
<thead>
<tr>
<th>Biomes or ecosystems</th>
<th>Typical cost of restoration in USD (high scenario)</th>
<th>Estimated annual benefits from restoration (average scenario)</th>
<th>Net present value of benefit over 40 years (USD/ha)</th>
<th>Internal rate of return (%)</th>
<th>Benefit/cost ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coral reefs</td>
<td>542,500</td>
<td>129,200</td>
<td>1,166,000</td>
<td>7</td>
<td>2.8</td>
</tr>
<tr>
<td>Coastal ecosystems</td>
<td>232,700</td>
<td>73,900</td>
<td>935,400</td>
<td>11</td>
<td>4.4</td>
</tr>
<tr>
<td>Mangroves</td>
<td>2,880</td>
<td>4,290</td>
<td>86,900</td>
<td>40</td>
<td>26.4</td>
</tr>
<tr>
<td>Inland wetlands</td>
<td>33,000</td>
<td>14,200</td>
<td>171,300</td>
<td>12</td>
<td>5.4</td>
</tr>
<tr>
<td>Lakes and rivers</td>
<td>4,000</td>
<td>3,800</td>
<td>69,700</td>
<td>27</td>
<td>15.5</td>
</tr>
<tr>
<td>Tropical forests</td>
<td>3,450</td>
<td>7,000</td>
<td>148,700</td>
<td>50</td>
<td>37.3</td>
</tr>
<tr>
<td>Other forests</td>
<td>2,390</td>
<td>1,620</td>
<td>26,300</td>
<td>20</td>
<td>10.3</td>
</tr>
<tr>
<td>Woodland and shrubland</td>
<td>990</td>
<td>1,571</td>
<td>32,180</td>
<td>42</td>
<td>28.4</td>
</tr>
<tr>
<td>Grassland</td>
<td>260</td>
<td>1,010</td>
<td>22,600</td>
<td>79</td>
<td>75.1</td>
</tr>
</tbody>
</table>

Rockstrom and Klum, 2015
The Therapy: “Lifestyle” Changes

<table>
<thead>
<tr>
<th>Biomes or ecosystems</th>
<th>Typical cost of restoration in USD (high scenario)</th>
<th>Estimated annual benefits from restoration (average scenario)</th>
<th>Net present value of benefit over 40 years (USD/ha)</th>
<th>Internal rate of return (%)</th>
<th>Benefit/cost ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coral reefs</td>
<td>542,500</td>
<td>129,200</td>
<td>1,166,000</td>
<td>7</td>
<td>2.8</td>
</tr>
<tr>
<td>Coastal ecosystems</td>
<td>232,700</td>
<td>73,900</td>
<td>935,400</td>
<td>11</td>
<td>4.4</td>
</tr>
<tr>
<td>Mangroves</td>
<td>2,880</td>
<td>4,290</td>
<td>86,900</td>
<td>40</td>
<td>26.4</td>
</tr>
<tr>
<td>Inland wetlands</td>
<td>33,000</td>
<td>14,200</td>
<td>171,300</td>
<td>12</td>
<td>5.4</td>
</tr>
<tr>
<td>Lakes and rivers</td>
<td>4,000</td>
<td>3,800</td>
<td>69,700</td>
<td>27</td>
<td>15.5</td>
</tr>
<tr>
<td>Tropical forests</td>
<td>3,450</td>
<td>7,000</td>
<td>148,700</td>
<td>50</td>
<td>37.3</td>
</tr>
<tr>
<td>Other forests</td>
<td>2,390</td>
<td>1,620</td>
<td>26,300</td>
<td>20</td>
<td>10.3</td>
</tr>
<tr>
<td>Woodland and shrubland</td>
<td>990</td>
<td>1,571</td>
<td>32,180</td>
<td>42</td>
<td>28.4</td>
</tr>
<tr>
<td>Grassland</td>
<td>260</td>
<td>1,010</td>
<td>22,600</td>
<td>79</td>
<td>75.1</td>
</tr>
</tbody>
</table>

Example of sea level rise:
- making room for the water
- a built environment for extreme floods (buildings and services)
- preparing the coastal zone for future inundation
- making room for ecosystem migration

Rockstrom and Klum, 2015
The Therapy: “Lifestyle” Changes

<table>
<thead>
<tr>
<th>Biomes or ecosystems</th>
<th>Typical cost of restoration in USD (high scenario)</th>
<th>Estimated annual benefits from restoration (average scenario)</th>
<th>Net present value of benefit over 40 years (USD/ha)</th>
<th>Internal rate of return (%)</th>
<th>Benefit/cost ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coral reefs</td>
<td>542,500</td>
<td>129,200</td>
<td>1,166,000</td>
<td>7</td>
<td>2.8</td>
</tr>
<tr>
<td>Coastal ecosystems</td>
<td>232,700</td>
<td>73,900</td>
<td>935,400</td>
<td>11</td>
<td>4.4</td>
</tr>
<tr>
<td>Mangroves</td>
<td>2,880</td>
<td>4,290</td>
<td>86,900</td>
<td>40</td>
<td>26.4</td>
</tr>
<tr>
<td>Inland wetlands</td>
<td>33,000</td>
<td>14,200</td>
<td>171,300</td>
<td>12</td>
<td>5.4</td>
</tr>
<tr>
<td>Lakes and rivers</td>
<td>4,000</td>
<td>3,800</td>
<td>69,700</td>
<td>27</td>
<td>15.5</td>
</tr>
<tr>
<td>Tropical forests</td>
<td>3,450</td>
<td>7,000</td>
<td>148,700</td>
<td>50</td>
<td>37.3</td>
</tr>
<tr>
<td>Other forests</td>
<td>2,390</td>
<td>1,620</td>
<td>26,300</td>
<td>20</td>
<td>10.3</td>
</tr>
<tr>
<td>Woodland and shrubland</td>
<td>990</td>
<td>1,571</td>
<td>32,180</td>
<td>42</td>
<td>28.4</td>
</tr>
<tr>
<td>Grassland</td>
<td>260</td>
<td>1,010</td>
<td>22,600</td>
<td>79</td>
<td>75.1</td>
</tr>
</tbody>
</table>

Example of sea level rise:
- making room for the water
- a built environment for extreme floods (buildings and services)
- preparing the coastal zone for future inundation
- making room for ecosystem migration

Living where it is safe, working where it is needed

Rockstrom and Klum, 2015
Key Points

During the Holocene, climate and sea level were exceptionally stable

The Holocene was a “safe operating space for humanity”

During the last hundred years, we have introduced rapid and large changes

The system is already now outside the “normal range” and in the transition to the Post-Holocene

Our knowledge is changing very fast and we may not know all thresholds

There is a potential for surprises and we need to be prepared
Key Points

During the Holocene, climate and sea level were exceptionally stable
The Holocene was a “safe operating space for humanity”

During the last hundred years, we have introduced rapid and large changes
The system is already now outside the “normal range” and in the transition to the Post-Holocene

Our knowledge is changing very fast and we may not know all thresholds
There is a potential for surprises and we need to be prepared

Paradigm shifts may be required; for example: instead of “Sea level does not change very and changes in the coastal zone are gradual” assume “Sea level can change fast and coastal zones can migrate rapidly.”
The Therapy: “Lifestyle” Changes
Sustainable Development is a development that meets the needs of the present while safeguarding Earth’s life support systems, on which the welfare of current and future generations depends.” (Griggs et al., 2013)
“Sustainable Development is a development that meets the needs of the presence while safeguarding Earth’s life support systems, on which the welfare of current and future generations depends.” (Griggs et al., 2013)
The Therapy: “Lifestyle” Changes

Economy is the link between humanity and Earth’s life-support system
The Therapy: “Lifestyle” Changes

Economy is the link between humanity and Earth’s life-support system.
Economy is the link between humanity and Earth’s life-support system

Economy against humanity:
An economy that meets our needs by burning fossil fuels and destroying Earth’s life-support system is like a doctor who practices medicine by killing the patients.
Economy *against* humanity:
An economy that meets our needs by burning fossil fuels and destroying Earth’s life-support system is like a doctor who practices medicine by killing the patients.

Economy *for* humanity:
“An economy that meets our needs while safeguarding Earth’s life-support system, on which the welfare of current and future generations depends.”
The Therapy: “Lifestyle” Changes

Economy is the link between humanity and Earth’s life-support system

Economy against humanity:
An economy that meets our needs by burning fossil fuels and destroying Earth’s life-support system is like a doctor who practices medicine by killing the patients.

Economy for humanity:
“An economy that meets our needs while safeguarding Earth’s life-support system, on which the welfare of current and future generations depends.”

“What is good for Earth’s life support system is good for humanity”
“No problem can be solved with the same consciousness that created it.”

Albert Einstein

“It is difficult to get a man to understand something when his job depends on not understanding it”

Upton Sinclair